in_seq1 = in_seq1.reshape((len(in_seq1), 1))
时间: 2024-08-12 15:07:59 浏览: 53
`in_seq1 = in_seq1.reshape((len(in_seq1), 1))` 这行代码是在 Python 中对数组(序列)进行操作,目的是将其转换为适合某些机器学习模型(如神经网络)输入的维度。这里涉及到的是重塑(reshape)操作。
具体解释如下:
1. `in_seq1` 是原始的一维序列(可能是列表、数组或一维张量)。
2. `.reshape()` 是 NumPy 或类似的库中的方法,用于改变数组的形状。
3. `(len(in_seq1), 1)` 定义了新的形状,它将原序列的长度作为新数组的行数(第一个维度),并将每个元素变成单个列(第二个维度)。这样就将一维数组变为了二维数组,每一行只有一个元素,这对于某些需要输入向量(如宽度为 1 的向量)的模型来说很有用。
相关问题:
1. 为什么要将一维数组转换成二维?
2. reshape()方法是否改变原数据的内存布局?
3. 如果in_seq1的元素本身已经是向量,这样做还有必要吗?
相关问题
in_seq1 = in_seq1.reshape((len(in_seq1), 1)) in_seq2 = in_seq2.reshape((len(in_seq2), 1)) out_seq = out_seq.reshape((len(out_seq), 1))
这个代码片段是在使用 Python 对于序列(sequences)进行操作时常见的步骤,主要应用于处理一维数组或列表,将其转换为二维张量(tensor),以便于输入到深度学习模型中,尤其是循环神经网络(RNNs)或长短期记忆网络(LSTM)等结构,这些模型通常期望输入数据是 (样本数量, 时间步长, 特征数量) 的形式。
具体来说:
1. `in_seq1 = in_seq1.reshape((len(in_seq1), 1))`:这里将 `in_seq1` 从一维数组调整为形状为 `(len(in_seq1), 1)`,这样每个元素变成了一个长度为1的一行,相当于展平后的单列向量。
2. `in_seq2 = in_seq2.reshape((len(in_seq2), 1))`:同样的操作对 `in_seq2` 进行了,确保它也是一维向量,每个样本占一行。
3. `out_seq = out_seq.reshape((len(out_seq), 1))`:最后,`out_seq` 也被调整为类似的形式,可能对应的是预测结果,或者用于某种后续处理。
def convert_midi(fp, _seq_len): notes_list = [] stream = converter.parse(fp) partitions = instrument.partitionByInstrument(stream) # print([(part.getInstrument().instrumentName, len(part.flat.notes)) for part in partitions]) # 获取第一个小节(Measure)中的节拍数 _press_time_dict = defaultdict(list) partition = None for part_sub in partitions: if part_sub.getInstrument().instrumentName.lower() == 'piano' and len(part_sub.flat.notes) > 0: partition = part_sub continue if partition is None: return None, None for _note in partition.flat.notes: _duration = str(_note.duration.quarterLength) if isinstance(_note, NoteClass.Note): _press_time_dict[str(_note.offset)].append([str(_note.pitch), _duration]) notes_list.append(_note) if isinstance(_note, ChordClass.Chord): press_list = _press_time_dict[str(_note.offset)] notes_list.append(_note) for sub_note in _note.notes: press_list.append([str(sub_note.pitch), _duration]) if len(_press_time_dict) == _seq_len: break _items = list(_press_time_dict.items()) _items = sorted(_items, key=lambda t:float(Fraction(t[0])))[:_seq_len] if len(_items) < _seq_len: return None,None last_step = Fraction(0,1) notes = np.zeros(shape=(_seq_len,len(notes_vocab),len(durations_vocab)),dtype=np.float32) steps = np.zeros(shape=(_seq_len,len(offsets_vocab)),dtype=np.float32) for idx,(cur_step,entities) in enumerate(_items): cur_step = Fraction(cur_step) diff_step = str(cur_step - last_step) if diff_step in offsets_vocab: steps[idx,offsets_vocab.index(diff_step)] = 1. last_step = cur_step else: steps[idx,offsets_vocab.index('0')] = 1. for pitch,quarterLen in entities: notes[idx,notes_vocab.index(pitch),durations_vocab.index(quarterLen if quarterLen in durations_vocab else '0')] = 1. notes = notes.reshape((seq_len,-1)) inputs = np.concatenate([notes,steps],axis=-1) return inputs,notes_list
这段代码是用来将midi文件转化为神经网络模型的输入,其中的`fp`参数是midi文件路径,`_seq_len`是序列长度。它首先使用`music21`库的`converter`模块读取midi文件,然后使用`instrument`模块按照乐器将音符分开。接着,它找到了乐器为钢琴的音轨,并将其中的音符按照时间顺序收集到`_press_time_dict`字典中。最后,它将`_press_time_dict`中的音符转化为神经网络模型的输入,其中包括每个时间步的音符和持续时间等信息。
阅读全文