图卷积网络进行骨骼识别代码_PyG训练图卷积网络GCN的代码参考
时间: 2024-05-10 18:18:27 浏览: 117
python毕业设计-基于时空图卷积(ST-GCN)的骨骼动作识别+源代码+文档说明
5星 · 资源好评率100%
这里提供一个基于 Pytorch Geometric(PyG)的图卷积网络(GCN)进行骨骼识别的代码参考,供您参考:
```python
import torch
from torch_geometric.data import DataLoader
from torch_geometric.datasets import Human36M
from torch_geometric.nn import GCNConv
from torch_geometric.utils import degree
# 加载数据集
train_dataset = Human36M('~/data/Human36M')
test_dataset = Human36M('~/data/Human36M', train=False)
# 构建数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# 定义模型
class GCN(torch.nn.Module):
def __init__(self):
super(GCN, self).__init__()
self.conv1 = GCNConv(54, 128)
self.conv2 = GCNConv(128, 256)
self.conv3 = GCNConv(256, 512)
self.fc1 = torch.nn.Linear(512, 256)
self.fc2 = torch.nn.Linear(256, 17 * 3)
def forward(self, x, edge_index):
# 第一层GCN
x = self.conv1(x, edge_index)
x = x.relu()
x = x.dropout()
# 第二层GCN
x = self.conv2(x, edge_index)
x = x.relu()
x = x.dropout()
# 第三层GCN
x = self.conv3(x, edge_index)
x = x.relu()
x = x.dropout()
# 全连接层
x = x.mean(dim=0)
x = self.fc1(x)
x = x.relu()
x = self.fc2(x)
return x.view(-1, 17, 3)
# 实例化模型并定义损失函数和优化器
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GCN().to(device)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(50):
model.train()
train_loss = 0.0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
pred = model(data.x, data.edge_index)
loss = criterion(pred, data.y)
loss.backward()
optimizer.step()
train_loss += loss.item() * data.num_graphs
# 测试模型
model.eval()
test_loss = 0.0
with torch.no_grad():
for data in test_loader:
data = data.to(device)
pred = model(data.x, data.edge_index)
loss = criterion(pred, data.y)
test_loss += loss.item() * data.num_graphs
print('Epoch {:03d}, Train Loss: {:.4f}, Test Loss: {:.4f}'.format(
epoch, train_loss / len(train_dataset), test_loss / len(test_dataset)))
```
这里的数据集是人体骨骼数据集 Human3.6M,每个图表示一个人的骨骼结构,节点表示关节,边表示骨骼。
模型采用了3层 GCN,最后通过全连接层输出每个关节的3D坐标。损失函数为 MSE,优化器为 Adam。
在训练过程中,每个图的损失值都会被累加并除以数据集大小得到平均损失值。同时,每个 epoch 结束后会输出训练集和测试集的平均损失值。
阅读全文