def dijkstra(start, end, graph): # 创建一个优先队列 queue = PriorityQueue() # 将起点添加到队列中 queue.put((0, start)) # 创建一个字典来存储每个节点的最短距离 distances = {start: 0} # 创建一个字典来存储每个节点的前一个节点 predecessors = {start: None} # 当队列不为空时 while not queue.empty(): # 取出队列中最小的节点 current = queue.get()[1] # 如果当前节点就是终点,则结束算法 if current == end: break # 遍历相邻节点 for neighbor in graph[current]: # 计算当前节点到相邻节点的距离 distance = distances[current] + neighbor[1] # 如果距离比之前计算的距离更短,则更新距离和前一个节点 if neighbor[0] not in distances or distance < distances[neighbor[0]]: distances[neighbor[0]] = distance predecessors[neighbor[0]] = current # 将相邻节点加入队列中 queue.put((distance, neighbor[0])) # 如果终点不在图中,则返回空列表 if end not in distances: return [] # 从终点开始追溯路径 path = [end] while path[-1] != start: path.append(predecessors[path[-1]]) # 反转路径,使其从起点到终点 path.reverse() return path, distances[end]中节点与相邻节点距离怎么算的

时间: 2023-07-03 19:20:19 浏览: 34
在这个实现中,graph 是一个字典,用于存储图中每个节点的相邻节点以及它们之间的距离。具体地,graph 的每个键表示一个节点,对应的值是一个列表,其中每个元素也是一个二元组,表示该节点的一个相邻节点及其到该相邻节点的距离。例如,假设有一个图 G={V,E},其中 V={A,B,C},E={(A,B,3),(A,C,2),(B,C,1)},则 graph 可以表示为: ``` graph = { "A": [("B", 3), ("C", 2)], "B": [("C", 1)], "C": [] } ``` 在 Dijkstra 算法中,计算当前节点到相邻节点的距离 distance 的方法是,将当前节点到起点的最短距离 distances[current] 加上该相邻节点到当前节点的距离 neighbor[1]。例如,在上面的例子中,当计算节点 A 到节点 B 的距离时,distance = distances["A"] + 3 = 0 + 3 = 3。如果这个距离比之前计算的距离更短,则更新距离和前一个节点。
相关问题

def dijkstra(start, end, graph): # 创建一个优先队列 queue = PriorityQueue() # 将起点添加到队列中 queue.put((0, start)) # 创建一个字典来存储每个节点的最短距离 distances = {start: 0} # 创建一个字典来存储每个节点的前一个节点 predecessors = {start: None} # 当队列不为空时 while not queue.empty(): # 取出队列中最小的节点 current = queue.get()[1] # 如果当前节点就是终点,则结束算法 if current == end: break # 遍历相邻节点 for neighbor in graph[current]: # 计算当前节点到相邻节点的距离 distance = distances[current] + neighbor[1] # 如果距离比之前计算的距离更短,则更新距离和前一个节点 if neighbor[0] not in distances or distance < distances[neighbor[0]]: distances[neighbor[0]] = distance predecessors[neighbor[0]] = current # 将相邻节点加入队列中 queue.put((distance, neighbor[0])) # 如果终点不在图中,则返回空列表 if end not in distances: return [] # 从终点开始追溯路径 path = [end] while path[-1] != start: path.append(predecessors[path[-1]]) # 反转路径,使其从起点到终点 path.reverse() return path, distances[end]什么意思

这是一个 Python 实现的 Dijkstra 算法,用于计算有向带权图中两个节点之间的最短路径。其中,start 和 end 分别表示起点和终点,graph 是一个字典,用于存储图中每个节点的相邻节点以及它们之间的距离。具体实现过程如下: 1. 创建一个优先队列 queue,将起点添加到队列中,并创建两个字典 distances 和 predecessors,用于存储每个节点的最短距离和前一个节点。 2. 当队列不为空时,取出队列中最小的节点 current。如果当前节点就是终点,则结束算法。否则,遍历当前节点的相邻节点。 3. 计算当前节点到相邻节点的距离 distance。如果距离比之前计算的距离更短,则更新距离和前一个节点。 4. 将相邻节点加入队列中。 5. 如果终点不在图中,则返回空列表。 6. 从终点开始追溯路径,将每个节点的前一个节点加入 path 列表中。最后反转路径,使其从起点到终点,并返回路径和终点的最短距离。

解释该函数def dijkstra(start, end, graph): # 创建一个优先队列 queue = PriorityQueue() # 将起点添加到队列中 queue.put((0, start)) # 创建一个字典来存储每个节点的最短距离 distances = {start: 0} # 创建一个字典来存储每个节点的前一个节点 predecessors = {start: None} # 当队列不为空时 while not queue.empty(): # 取出队列中最小的节点 current = queue.get()[1] # 如果当前节点就是终点,则结束算法 if current == end: break # 遍历相邻节点 for neighbor in graph[current]: # 计算当前节点到相邻节点的距离 distance = distances[current] + neighbor[1] # 如果距离比之前计算的距离更短,则更新距离和前一个节点 if neighbor[0] not in distances or distance < distances[neighbor[0]]: distances[neighbor[0]] = distance predecessors[neighbor[0]] = current # 将相邻节点加入队列中 queue.put((distance, neighbor[0])) # 如果终点不在图中,则返回空列表 if end not in distances: return [] # 从终点开始追溯路径 path = [end] while path[-1] != start: path.append(predecessors[path[-1]]) # 反转路径,使其从起点到终点 path.reverse() return path, distances[end]中distances[end]什么意思

该函数实现了 Dijkstra 算法,用于求解带权重的图中两个节点之间的最短路径。其中,distances[end] 表示起点到终点的最短距离。在算法运行过程中,distances 字典存储了每个节点到起点的最短距离,predecessors 字典存储了每个节点的前一个节点。通过追溯前一个节点,可以找到起点到终点的最短路径。

相关推荐

利用altitudes = np.zeros((GRID_SIZE, GRID_SIZE)) for i in range(GRID_SIZE): for j in range(GRID_SIZE): altitudes[i][j] = noise.pnoise2(i/scale, j/scale, octaves=octaves, persistence=persistence, lacunarity=lacunarity, repeatx=GRID_SIZE, repeaty=GRID_SIZE, base=seed)生成曲面,在该曲面上利用函数:def dijkstra(start, end, graph): # 创建一个优先队列 queue = PriorityQueue() # 将起点添加到队列中 queue.put((0, start)) # 创建一个字典来存储每个节点的最短距离 distances = {start: 0} # 创建一个字典来存储每个节点的前一个节点 predecessors = {start: None} # 当队列不为空时 while not queue.empty(): # 取出队列中最小的节点 current = queue.get()[1] # 如果当前节点就是终点,则结束算法 if current == end: break # 遍历相邻节点 for neighbor in graph[current]: # 计算当前节点到相邻节点的距离 distance = distances[current] + neighbor[1] # 如果距离比之前计算的距离更短,则更新距离和前一个节点 if neighbor[0] not in distances or distance < distances[neighbor[0]]: distances[neighbor[0]] = distance predecessors[neighbor[0]] = current # 将相邻节点加入队列中 queue.put((distance, neighbor[0])) # 如果终点不在图中,则返回空列表 if end not in distances: return [] # 从终点开始追溯路径 path = [end] while path[-1] != start: path.append(predecessors[path[-1]]) # 反转路径,使其从起点到终点 path.reverse() return path, distances[end]找到三维曲面上到五个曲面上的点的距离和最短的最佳选址

最新推荐

recommend-type

操作系统的开发是一项复杂而深奥的工作,涉及到计算机科学中的许多核心概念和技术 下面是操作系统开发的一些关键方面和步骤: ###

操作系统的开发是一项复杂而深奥的工作,涉及到计算机科学中的许多核心概念和技术。下面是操作系统开发的一些关键方面和步骤: ### 1. **理解操作系统的基本概念** 操作系统是管理计算机硬件和软件资源的系统软件。它提供了用户和应用程序与计算机硬件之间的接口,包括处理器管理、内存管理、文件系统、设备驱动程序等功能。 ### 2. **选择开发平台和工具** 操作系统开发通常在特定的硬件平台上进行,例如 x86 架构的个人电脑或者嵌入式系统。选择合适的开发工具和环境对于成功开发操作系统至关重要,常见的工具包括汇编语言、C 语言以及相关的开发工具链。 ### 3. **设计操作系统架构** 操作系统的设计涉及到架构设计和功能划分,主要包括以下几个方面: - **内核类型**:选择单内核、微内核还是混合内核。 - **进程管理**:实现进程调度、进程通信和同步。 - **内存管理**:包括虚拟内存管理、页面置换算法等。 - **文件系统**:设计文件存储和管理的结构。 - **设备管理**:编写设备驱动程序以管理计算机硬件。 ### 4. **实现核心功能** 在设计之后,开
recommend-type

Capgemini-生成式人工智能与营销角色的演变&CMO的策略(英)-2023(1).pdf

Capgemini-生成式人工智能与营销角色的演变&CMO的策略(英)-2023(1)
recommend-type

共轴极紫外投影光刻物镜设计研究

"音视频-编解码-共轴极紫外投影光刻物镜设计研究.pdf" 这篇博士学位论文详细探讨了共轴极紫外投影光刻物镜的设计研究,这是音视频领域的一个细分方向,与信息技术中的高级光学工程密切相关。作者刘飞在导师李艳秋教授的指导下,对这一前沿技术进行了深入研究,旨在为我国半导体制造设备的发展提供关键技术支持。 极紫外(EUV)光刻技术是当前微电子制造业中的热点,被视为下一代主流的光刻技术。这种技术的关键在于其投影曝光系统,特别是投影物镜和照明系统的设计。论文中,作者提出了创新的初始结构设计方法,这为构建高性能的EUV光刻投影物镜奠定了基础。非球面结构的成像系统优化是另一个核心议题,通过这种方法,可以提高光刻系统的分辨率和成像质量,达到接近衍射极限的效果。 此外,论文还详细阐述了极紫外光刻照明系统的初始建模和优化策略。照明系统的优化对于确保光刻过程的精确性和一致性至关重要,能够减少缺陷,提高晶圆上的图案质量。作者使用建立的模型和优化算法,设计出多套EUV光刻机的成像系统,并且经过优化后的系统展现出优秀的分辨率和成像性能。 最后,作者在论文中做出了研究成果声明,保证了所有内容的原创性,并同意北京理工大学根据相关规定使用和分享学位论文。这表明,该研究不仅代表了个人的学术成就,也符合学术界的伦理规范,有助于推动相关领域的知识传播和进步。 这篇论文深入研究了共轴极紫外投影光刻物镜的设计,对于提升我国半导体制造技术,尤其是光刻技术的自主研发能力具有重大意义。其内容涵盖的非球面成像系统优化、EUV照明系统建模与优化等,都是目前微电子制造领域亟待解决的关键问题。这些研究成果不仅为实际的光刻设备开发提供了理论基础,也为未来的科研工作提供了新的思路和方法。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

泊松分布:离散分布中的典型代表,探索泊松分布的应用场景

![泊松分布:离散分布中的典型代表,探索泊松分布的应用场景](https://img-blog.csdnimg.cn/20190802094932661.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3ltaHVh,size_16,color_FFFFFF,t_70) # 1. 泊松分布的理论基础 泊松分布是一种离散概率分布,用于描述在固定时间或空间间隔内发生的随机事件的数量。它以法国数学家西梅翁·德尼·泊松(Siméon Denis
recommend-type

``` if build_id then -- 单个屋子 else -- 所有屋子 end ```

在你的代码片段中,`build_id` 的存在与否决定了执行不同的逻辑。如果 `build_id` 为真(非空或非零),则执行针对单个屋子的代码;否则,执行针对所有屋子的代码。这种结构在 Lua 中已经相对简洁,但为了提高可读性和潜在的性能优化,你可以考虑以下几点: 1. **使用更明确的条件语句**:可以使用 `if build_id ~= nil` 替换 `if build_id then`,因为 `nil` 在 Lua 中被视为 `false`。 2. **逻辑封装**:如果两个分支的代码复杂度相当,可以考虑将它们抽象为函数,这样更易于维护和复用。 3. **避免不必要的布尔转换*
recommend-type

基于GIS的通信管线管理系统构建与音视频编解码技术应用

音视频编解码在基于GIS的通信管线管理系统中的应用 音视频编解码技术在当前的通信技术中扮演着非常重要的角色,特别是在基于GIS的通信管线管理系统中。随着通信技术的快速发展和中国移动通信资源的建设范围不断扩大,管线资源已经成为电信运营商资源的核心之一。 在当前的通信业务中,管线资源是不可或缺的一部分,因为现有的通信业务都是建立在管线资源之上的。随着移动、电信和联通三大运营商之间的竞争日益激烈,如何高效地掌握和利用管线资源已经成为运营商的一致认识。然而,大多数的资源运营商都将资源反映在图纸和电子文件中,管理非常耗时。同时,搜索也非常不方便,当遇到大规模的通信事故时,无法找到相应的图纸,浪费了大量的时间,给运营商造成了巨大的损失。 此外,一些国家的管线资源系统也存在许多问题,如查询基本数据非常困难,新项目的建设和迁移非常困难。因此,建立一个基于GIS的通信管线管理系统变得非常必要。该系统可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。 在基于GIS的通信管线管理系统中,音视频编解码技术可以发挥重要作用。通过音视频编解码技术,可以将管线资源的信息实时地捕捉和处理,从而实现管线资源的实时监控和管理。同时,音视频编解码技术也可以用于事故处理中,对管线资源进行实时监控和分析,以便快速确定事故原因和位置,减少事故处理时间。 此外,基于GIS的通信管线管理系统还可以实现管线资源的空间分析和可视化,通过音视频编解码技术,可以将管线资源的信息转换为实时的视频图像,从而实现管线资源的实时监控和管理。同时,该系统还可以实现管线资源的智能分析和预测,对管线资源的使用和维护进行科学的分析和预测,从而提高管线资源的使用效率和可靠性。 音视频编解码技术在基于GIS的通信管线管理系统中扮演着非常重要的角色,可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

二项分布:离散分布中的关键案例,理解二项分布的应用

![二项分布:离散分布中的关键案例,理解二项分布的应用](https://img-blog.csdnimg.cn/20201206104644803.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDQ0MTEzMQ==,size_16,color_FFFFFF,t_70) # 1. 二项分布的基本概念 二项分布是一种离散概率分布,用于描述在固定次数的独立试验中成功事件发生的次数。它广泛应用于各种领域,包括质量控
recommend-type

程序哪里有错误 fun(int *p1,int *p2) { int *p; *p = *p1; *p1 = *p2; *p2 = *p; }

这个函数`fun(int *p1, int *p2)`存在几个错误和潜在问题: 1. 变量声明与赋值:你试图通过`*p = *p1`来分配指针`p`的值,但实际上`p`是一个未初始化的指针,直接赋值可能会导致不确定的行为。正确的做法是先为`p`指向一个内存位置。 2. 临时变量:你的代码没有明确使用`p`这个临时变量。如果你想交换`p1`和`p2`所指向的值,应该使用指针的解引用操作,而不是将`*p`赋值给它们。 3. 指向不确定的数据:由于`p`没有被初始化,如果它指向的是栈上的临时空间,当函数结束时这些值可能会丢失,除非特别指定它指向堆中的数据。 修复后的代码可能如下所示: ```