读取pcd文件,利用dbscan算法完成点云中方车道线的聚类并拟合车道线可视化,使用c++完整代码
时间: 2024-01-09 07:04:38 浏览: 206
好的,以下是一个完整的示例代码,包括读取pcd文件、运行dbscan算法、拟合车道线和可视化结果:
```c++
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/segmentation/impl/region_growing.hpp>
#include <pcl/segmentation/impl/region_growing_rgb.hpp>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/common/transforms.h>
#include <pcl/common/eigen.h>
int main(int argc, char** argv)
{
// 读取点云文件
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PCDReader reader;
reader.read<pcl::PointXYZ>("filename.pcd", *cloud);
// dbscan聚类
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
tree->setInputCloud(cloud);
std::vector<pcl::PointIndices> cluster_indices;
pcl::DBSCAN<pcl::PointXYZ> dbscan;
dbscan.setInputCloud(cloud);
dbscan.setMinPoints(10);
dbscan.setEps(0.5);
dbscan.setSearchMethod(tree);
dbscan.extract(cluster_indices);
// 提取聚类点云
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> clusters;
for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); ++it)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cluster(new pcl::PointCloud<pcl::PointXYZ>);
for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit)
{
cluster->points.push_back(cloud->points[*pit]);
}
cluster->width = cluster->points.size();
cluster->height = 1;
cluster->is_dense = true;
clusters.push_back(cluster);
}
// 拟合车道线
pcl::PointCloud<pcl::PointXYZ>::Ptr line_cloud(new pcl::PointCloud<pcl::PointXYZ>);
for (std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr>::const_iterator it = clusters.begin(); it != clusters.end(); ++it)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cluster = *it;
pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
pcl::SACSegmentation<pcl::PointXYZ> seg;
seg.setOptimizeCoefficients(true);
seg.setModelType(pcl::SACMODEL_LINE);
seg.setMethodType(pcl::SAC_RANSAC);
seg.setDistanceThreshold(0.1);
seg.setInputCloud(cluster);
seg.segment(*inliers, *coefficients);
if (inliers->indices.size() > 0)
{
pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud(cluster);
extract.setIndices(inliers);
extract.filter(*line_cloud);
}
}
// 可视化结果
pcl::visualization::PCLVisualizer viewer("PointCloud Viewer");
// 原始点云
viewer.addPointCloud(cloud, "cloud");
// 聚类点云
int cluster_id = 0;
for (std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr>::const_iterator it = clusters.begin(); it != clusters.end(); ++it)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cluster = *it;
std::string cluster_name = "cluster_" + std::to_string(cluster_id);
viewer.addPointCloud(cluster, cluster_name);
cluster_id++;
}
// 拟合车道线
viewer.addLine<pcl::PointXYZ>(line_cloud->points[0], line_cloud->points[1], 1.0, 0.0, 0.0, "line");
viewer.spin();
return 0;
}
```
注意,以上代码仅为示例,具体实现可能需要根据实际情况进行调整。另外,dbscan算法和拟合车道线方法也可以根据实际情况进行选择和调整。
阅读全文