PCL对点云数据进行聚类和平面拟合 代码
时间: 2024-05-04 11:17:53 浏览: 112
PCL Ransac 点云平面拟合 C++
以下是使用PCL库对点云数据进行聚类和平面拟合的示例代码:
```c++
#include <iostream>
#include <pcl/point_types.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/segmentation/region_growing.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/visualization/cloud_viewer.h>
int main(int argc, char** argv)
{
// 读取点云数据
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
if (pcl::io::loadPCDFile<pcl::PointXYZ>("input_cloud.pcd", *cloud) == -1)
{
PCL_ERROR("Could not read file.\n");
return -1;
}
// 下采样滤波
pcl::VoxelGrid<pcl::PointXYZ> vg;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_downsampled(new pcl::PointCloud<pcl::PointXYZ>);
vg.setInputCloud(cloud);
vg.setLeafSize(0.01f, 0.01f, 0.01f);
vg.filter(*cloud_downsampled);
// 计算法向量
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
tree->setInputCloud(cloud_downsampled);
ne.setInputCloud(cloud_downsampled);
ne.setSearchMethod(tree);
ne.setRadiusSearch(0.03);
ne.compute(*normals);
// 区域生长分割
pcl::RegionGrowing<pcl::PointXYZ, pcl::Normal> rg;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_segmented(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::Normal>::Ptr normals_segmented(new pcl::PointCloud<pcl::Normal>);
std::vector<pcl::PointIndices> clusters;
rg.setInputCloud(cloud_downsampled);
rg.setInputNormals(normals);
rg.setMinClusterSize(100);
rg.setMaxClusterSize(100000);
rg.setNumberOfNeighbours(30);
rg.setSmoothnessThreshold(3.0 / 180.0 * M_PI);
rg.setCurvatureThreshold(1.0);
rg.extract(clusters);
// 平面拟合
pcl::SACSegmentation<pcl::PointXYZ> seg;
pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
seg.setOptimizeCoefficients(true);
seg.setModelType(pcl::SACMODEL_PLANE);
seg.setMethodType(pcl::SAC_RANSAC);
seg.setMaxIterations(1000);
seg.setDistanceThreshold(0.01);
for (std::vector<pcl::PointIndices>::const_iterator it = clusters.begin(); it != clusters.end(); ++it)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>);
for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit)
{
cloud_cluster->push_back((*cloud_downsampled)[*pit]);
}
seg.setInputCloud(cloud_cluster);
seg.segment(*inliers, *coefficients);
if (inliers->indices.size() == 0)
{
std::cerr << "Could not estimate a planar model for the given dataset." << std::endl;
continue;
}
std::cout << "Plane coefficients: " << *coefficients << std::endl;
// 将拟合结果可视化
pcl::visualization::PCLVisualizer viewer("Plane Fitting");
viewer.setBackgroundColor(0.0, 0.0, 0.0);
viewer.addPointCloud<pcl::PointXYZ>(cloud_cluster, "cloud_cluster");
pcl::ModelCoefficients coeffs;
coeffs.values.resize(4);
coeffs.values[0] = coefficients->values[0];
coeffs.values[1] = coefficients->values[1];
coeffs.values[2] = coefficients->values[2];
coeffs.values[3] = coefficients->values[3];
viewer.addPlane(coeffs, "plane");
viewer.spin();
}
return 0;
}
```
该示例代码中,我们首先读取一个点云数据,然后进行下采样滤波,计算法向量,然后使用区域生长分割对点云数据进行聚类,接着对每个聚类进行平面拟合,并将拟合结果可视化。
需要注意的是,这里的点云数据格式为 `pcl::PointXYZ`,即只包含三维坐标信息,如果点云数据包括其他信息,如颜色等,需要使用其他格式的点云数据。
阅读全文