编写二叉树的递归遍历程序,实现:给定一棵二叉树的“扩展先序遍历序列”,创建这棵 二叉树 (1)输出二叉树的先序遍历的结点序列。 (2)输出二叉树的后序遍历的结点序列。 (3)输出二叉树的中序遍历的结点序列。 (4)输出二叉树的叶子结点。 (5)统计二叉树的结点个数。

时间: 2024-03-30 13:12:51 浏览: 62
ZIP

二叉树的几种操作,包括递归先序建立二叉树、先序遍历、中序遍历、后序遍历、非递归的各种遍历

star5星 · 资源好评率100%
Hello!我可以回答你的问题。以下是二叉树的递归遍历程序: 给定一棵二叉树的扩展先序遍历序列,我们可以通过递归的方式创建这棵二叉树,代码实现如下: ``` /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { return buildTreeHelper(preorder, inorder, 0, preorder.size()-1, 0, inorder.size()-1); } TreeNode* buildTreeHelper(vector<int>& preorder, vector<int>& inorder, int pre_start, int pre_end, int in_start, int in_end) { if (pre_start > pre_end) { return nullptr; } int root_val = preorder[pre_start]; TreeNode* root = new TreeNode(root_val); int root_pos = 0; for (int i=in_start; i<=in_end; i++) { if (inorder[i] == root_val) { root_pos = i; break; } } int left_count = root_pos - in_start; int right_count = in_end - root_pos; root->left = buildTreeHelper(preorder, inorder, pre_start+1, pre_start+left_count, in_start, root_pos-1); root->right = buildTreeHelper(preorder, inorder, pre_end-right_count+1, pre_end, root_pos+1, in_end); return root; } }; ``` 其中,变量`pre_start`, `pre_end`, `in_start`, `in_end`表示当前二叉树子树在先序和中序遍历中的区间范围。 (1)输出二叉树的先序遍历的结点序列: 先序遍历的顺序是:根节点 -> 左子树 -> 右子树。所以我们只需要按照这个顺序递归遍历每个节点,输出它们的值即可。代码实现如下: ``` class Solution { public: vector<int> preorderTraversal(TreeNode* root) { vector<int> ret; preorderTraversalHelper(root, ret); return ret; } void preorderTraversalHelper(TreeNode* root, vector<int>& ret) { if (root == nullptr) { return; } ret.push_back(root->val); preorderTraversalHelper(root->left, ret); preorderTraversalHelper(root->right, ret); } }; ``` (2)输出二叉树的后序遍历的结点序列: 后序遍历的顺序是:左子树 -> 右子树 -> 根节点。所以我们只需要按照这个顺序递归遍历每个节点,输出它们的值即可。代码实现如下: ``` class Solution { public: vector<int> postorderTraversal(TreeNode* root) { vector<int> ret; postorderTraversalHelper(root, ret); return ret; } void postorderTraversalHelper(TreeNode* root, vector<int>& ret) { if (root == nullptr) { return; } postorderTraversalHelper(root->left, ret); postorderTraversalHelper(root->right, ret); ret.push_back(root->val); } }; ``` (3)输出二叉树的中序遍历的结点序列: 中序遍历的顺序是:左子树 -> 根节点 -> 右子树。所以我们只需要按照这个顺序递归遍历每个节点,输出它们的值即可。代码实现如下: ``` class Solution { public: vector<int> inorderTraversal(TreeNode* root) { vector<int> ret; inorderTraversalHelper(root, ret); return ret; } void inorderTraversalHelper(TreeNode* root, vector<int>& ret) { if (root == nullptr) { return; } inorderTraversalHelper(root->left, ret); ret.push_back(root->val); inorderTraversalHelper(root->right, ret); } }; ``` (4)输出二叉树的叶子结点: 如果一个节点的左子树和右子树都为空,那么它就是叶子节点。我们可以通过递归遍历每个节点,判断是否为叶子节点,如果是叶子节点,就输出它的值。代码实现如下: ``` class Solution { public: vector<int> getLeaves(TreeNode* root) { vector<int> ret; getLeavesHelper(root, ret); return ret; } void getLeavesHelper(TreeNode* root, vector<int>& ret) { if (root == nullptr) { return; } if (root->left == nullptr && root->right == nullptr) { ret.push_back(root->val); } getLeavesHelper(root->left, ret); getLeavesHelper(root->right, ret); } }; ``` (5)统计二叉树的结点个数: 我们可以通过递归遍历每个节点,依次累加它们的数量,最终得到二叉树的结点个数。代码实现如下: ``` class Solution { public: int countNodes(TreeNode* root) { if (root == nullptr) { return 0; } return 1 + countNodes(root->left) + countNodes(root->right); } }; ``` 以上是关于二叉树的递归遍历程序的实现,希望回答能够帮到你!
阅读全文

相关推荐

最新推荐

recommend-type

用Python实现二叉树、二叉树非递归遍历及绘制的例子

在Python中实现二叉树,通常涉及到节点定义、遍历算法和可视化表示。本文将详细介绍如何用Python构建二叉树,非递归遍历以及绘制二叉树。 首先,我们创建一个二叉树节点类(BiNode),它包含元素值(element)以及...
recommend-type

通过先序遍历和中序遍历后的序列还原二叉树(实现方法)

通过先序遍历和中序遍历后的序列还原二叉树 二叉树遍历序列还原是计算机科学中的一种重要问题,它广泛应用于数据结构、算法设计和软件开发等领域。 Given a pair of sequences generated by preorder and inorder ...
recommend-type

C++ 数据结构二叉树(前序/中序/后序递归、非递归遍历)

"C++ 数据结构二叉树(前序/中序/后序递归、非递归遍历)" 本文主要介绍了C++ 数据结构二叉树的相关知识点,包括二叉树的定义、特点、遍历方式等。同时,提供实例代码来帮助大家理解掌握二叉树。 一、什么是二叉树...
recommend-type

PureMVC AS3在Flash中的实践与演示:HelloFlash案例分析

资源摘要信息:"puremvc-as3-demo-flash-helloflash:PureMVC AS3 Flash演示" PureMVC是一个开源的、轻量级的、独立于框架的用于MVC(模型-视图-控制器)架构模式的实现。它适用于各种应用程序,并且在多语言环境中得到广泛支持,包括ActionScript、C#、Java等。在这个演示中,使用了ActionScript 3语言进行Flash开发,展示了如何在Flash应用程序中运用PureMVC框架。 演示项目名为“HelloFlash”,它通过一个简单的动画来展示PureMVC框架的工作方式。演示中有一个小蓝框在灰色房间内移动,并且可以通过多种方式与之互动。这些互动包括小蓝框碰到墙壁改变方向、通过拖拽改变颜色和大小,以及使用鼠标滚轮进行缩放等。 在技术上,“HelloFlash”演示通过一个Flash电影的单帧启动应用程序。启动时,会发送通知触发一个启动命令,然后通过命令来初始化模型和视图。这里的视图组件和中介器都是动态创建的,并且每个都有一个唯一的实例名称。组件会与他们的中介器进行通信,而中介器则与代理进行通信。代理用于保存模型数据,并且中介器之间通过发送通知来通信。 PureMVC框架的核心概念包括: - 视图组件:负责显示应用程序的界面部分。 - 中介器:负责与视图组件通信,并处理组件之间的交互。 - 代理:负责封装数据或业务逻辑。 - 控制器:负责管理命令的分派。 在“HelloFlash”中,我们可以看到这些概念的具体实现。例如,小蓝框的颜色变化,是由代理来处理的模型数据;而小蓝框的移动和缩放则是由中介器与组件之间的通信实现的。所有这些操作都是在PureMVC框架的规则和指导原则下完成的。 在Flash开发中,ActionScript 3是主要的编程语言,它是一种面向对象的语言,并且支持复杂的事件处理和数据管理。Flash平台本身提供了一套丰富的API和框架,使得开发者可以创建动态的、交互性强的网络应用。 最后,我们还看到了一个压缩包文件的名称列表“puremvc-as3-demo-flash-helloflash-master”,这表明该演示项目的源代码应该可以在该压缩包中找到,并且可以在支持ActionScript 3的开发环境中进行分析和学习。开发者可以通过这个项目的源代码来深入了解PureMVC框架在Flash应用中的应用,并且学习到如何实现复杂的用户交互、数据处理和事件通信。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

YRC1000 EtherNet_IP通信协议:掌握连接与数据交换的6个关键策略

![YRC1000 EtherNetIP通信功能说明书](https://5.imimg.com/data5/SELLER/Default/2022/12/EE/XV/JL/4130645/yrc1000-csra-cdc101aa-3--1000x1000.jpg) # 摘要 YRC1000 EtherNet/IP通信协议作为工业自动化领域的重要技术之一,本论文对其进行了系统性的介绍和分析。从通信连接策略的实施到数据交换机制的详细阐述,再到高级应用与实践案例的深入探讨,本文全面覆盖了YRC1000的操作原理、配置方法、安全性和性能监控等方面。通过对各种典型应用场景的案例分析,本文不仅总结了
recommend-type

如何设置 OpenFileDialog 用户只能在固定文件夹及其子文件夹里选择文件

在Windows应用程序中,如果你想要限制OpenFileDialog让用户只能在特定的文件夹及其子文件夹中选择文件,你可以通过设置`InitialDirectory`属性和`Filter`属性来实现。以下是步骤: 1. 创建一个`OpenFileDialog`实例: ```csharp OpenFileDialog openFileDialog = new OpenFileDialog(); ``` 2. 设置初始目录(`InitialDirectory`)为你要限制用户选择的起始文件夹,例如: ```csharp string restrictedFolder = "C:\\YourR
recommend-type

掌握Makefile多目标编译与清理操作

资源摘要信息:"makefile学习用测试文件.rar" 知识点: 1. Makefile的基本概念: Makefile是一个自动化编译的工具,它可以根据文件的依赖关系进行判断,只编译发生变化的文件,从而提高编译效率。Makefile文件中定义了一系列的规则,规则描述了文件之间的依赖关系,并指定了如何通过命令来更新或生成目标文件。 2. Makefile的多个目标: 在Makefile中,可以定义多个目标,每个目标可以依赖于其他的文件或目标。当执行make命令时,默认情况下会构建Makefile中的第一个目标。如果你想构建其他的特定目标,可以在make命令后指定目标的名称。 3. Makefile的单个目标编译和删除: 在Makefile中,单个目标的编译通常涉及依赖文件的检查以及编译命令的执行。删除操作则通常用clean规则来定义,它不依赖于任何文件,但执行时会删除所有编译生成的目标文件和中间文件,通常不包含源代码文件。 4. Makefile中的伪目标: 伪目标并不是一个文件名,它只是一个标签,用来标识一个命令序列,通常用于执行一些全局性的操作,比如清理编译生成的文件。在Makefile中使用特殊的伪目标“.PHONY”来声明。 5. Makefile的依赖关系和规则: 依赖关系说明了一个文件是如何通过其他文件生成的,规则则是对依赖关系的处理逻辑。一个规则通常包含一个目标、它的依赖以及用来更新目标的命令。当依赖的时间戳比目标的新时,相应的命令会被执行。 6. Linux环境下的Makefile使用: Makefile的使用在Linux环境下非常普遍,因为Linux是一个类Unix系统,而make工具起源于Unix系统。在Linux环境中,通过终端使用make命令来执行Makefile中定义的规则。Linux中的make命令有多种参数来控制执行过程。 7. Makefile中变量和模式规则的使用: 在Makefile中可以定义变量来存储一些经常使用的字符串,比如编译器的路径、编译选项等。模式规则则是一种简化多个相似规则的方法,它使用模式来匹配多个目标,适用于文件名有规律的情况。 8. Makefile的学习资源: 学习Makefile可以通过阅读相关的书籍、在线教程、官方文档等资源,推荐的书籍有《Managing Projects with GNU Make》。对于初学者来说,实际编写和修改Makefile是掌握Makefile的最好方式。 9. Makefile的调试和优化: 当Makefile较为复杂时,可能出现预料之外的行为,此时需要调试Makefile。可以使用make的“-n”选项来预览命令的执行而不实际运行它们,或者使用“-d”选项来输出调试信息。优化Makefile可以减少不必要的编译,提高编译效率,例如使用命令的输出作为条件判断。 10. Makefile的学习用测试文件: 对于学习Makefile而言,实际操作是非常重要的。通过提供一个测试文件,可以更好地理解Makefile中目标的编译和删除操作。通过编写相应的Makefile,并运行make命令,可以观察目标是如何根据依赖被编译和在需要时如何被删除的。 通过以上的知识点,你可以了解到Makefile的基本用法和一些高级技巧。在Linux环境下,利用Makefile可以有效地管理项目的编译过程,提高开发效率。对于初学者来说,通过实际编写Makefile并结合测试文件进行练习,将有助于快速掌握Makefile的使用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

模拟IC设计在无线通信中的五大机遇与四大挑战深度解读

![模拟IC设计在无线通信中的五大机遇与四大挑战深度解读](http://www.jrfcl.com/uploads/201909/5d905abeb9c72.jpg) # 摘要 模拟IC设计在无线通信领域扮演着至关重要的角色,随着无线通信市场的快速增长,模拟IC设计的需求也随之上升。本文分析了模拟IC设计在无线通信中的机遇,特别是在5G和物联网(IoT)等新兴技术的推动下,对能效和尺寸提出了更高的要求。同时,本文也探讨了设计过程中所面临的挑战,包括制造工艺的复杂性、电磁干扰、信号完整性、成本控制及技术标准与法规遵循等问题。最后,文章展望了未来的发展趋势,提出了创新设计方法论、人才培养与合作