麻将AI代码
时间: 2023-07-02 17:19:10 浏览: 208
下面是一个使用 TensorFlow 和 Keras 实现的麻将AI代码示例,主要使用了深度强化学习算法:
```python
import numpy as np
import tensorflow as tf
from tensorflow import keras
class MahjongAI:
def __init__(self):
self.model = self.build_model()
self.target_model = self.build_model()
self.target_model.set_weights(self.model.get_weights())
self.replay_buffer = []
self.batch_size = 32
self.gamma = 0.99
self.epsilon = 1.0
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.update_freq = 1000
self.steps_since_update = 0
def build_model(self):
model = keras.Sequential()
model.add(keras.layers.Dense(128, input_dim=34, activation='relu'))
model.add(keras.layers.Dense(128, activation='relu'))
model.add(keras.layers.Dense(34, activation='linear'))
model.compile(loss='mse', optimizer=keras.optimizers.Adam())
return model
def select_action(self, state):
if np.random.rand() < self.epsilon:
return np.random.randint(0, 34)
q_values = self.model.predict(state.reshape(1, -1))[0]
return np.argmax(q_values)
def update_replay_buffer(self, state, action, reward, next_state, done):
self.replay_buffer.append((state, action, reward, next_state, done))
if len(self.replay_buffer) > 100000:
self.replay_buffer.pop(0)
def update_model(self):
if len(self.replay_buffer) < self.batch_size:
return
batch = np.random.choice(self.replay_buffer, self.batch_size)
states = np.array([transition[0] for transition in batch])
actions = np.array([transition[1] for transition in batch])
rewards = np.array([transition[2] for transition in batch])
next_states = np.array([transition[3] for transition in batch])
dones = np.array([transition[4] for transition in batch])
q_values = self.model.predict(states)
next_q_values = self.target_model.predict(next_states)
for i in range(self.batch_size):
if dones[i]:
q_values[i][actions[i]] = rewards[i]
else:
q_values[i][actions[i]] = rewards[i] + self.gamma * np.max(next_q_values[i])
self.model.fit(states, q_values, verbose=0)
self.steps_since_update += 1
if self.steps_since_update % self.update_freq == 0:
self.target_model.set_weights(self.model.get_weights())
def train(self, env, episodes=100):
for episode in range(episodes):
state = env.reset()
done = False
total_reward = 0
while not done:
action = self.select_action(state)
next_state, reward, done, _ = env.step(action)
self.update_replay_buffer(state, action, reward, next_state, done)
self.update_model()
state = next_state
total_reward += reward
print('Episode', episode+1, 'Total Reward:', total_reward)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def play(self, env):
state = env.reset()
done = False
while not done:
action = self.select_action(state)
print('Action:', action)
state, _, done, _ = env.step(action)
if __name__ == '__main__':
ai = MahjongAI()
# TODO: 实现麻将游戏环境,并传入 train 或 play 方法中进行训练或游戏
```
这个示例代码使用了深度强化学习算法,建立了一个神经网络模型来预测每个操作的质量分数,使用经验回放和目标网络来提高训练效率。在实际使用时,需要根据实际情况对代码进行修改和调整。
阅读全文