粒子滤波算法融合车道线观测,优化车体位姿,请用C++实现
时间: 2024-03-18 08:41:48 浏览: 60
好的,我会尽力回答你的问题。
粒子滤波算法(Particle Filter)是一种概率滤波算法,通常用于非线性问题的状态估计。而车道线观测和车体位姿优化则是一种常见的自动驾驶问题,因此粒子滤波算法被广泛应用于自动驾驶领域。
下面是一个用 C++ 实现粒子滤波算法融合车道线观测,优化车体位姿的示例代码:
```cpp
#include <iostream>
#include <vector>
#include <random>
using namespace std;
// 定义粒子类型
struct Particle {
double x, y, theta, weight;
};
// 定义观测类型
struct Observation {
double x, y;
};
// 定义控制输入类型
struct Control {
double v, w;
};
// 定义粒子滤波器类
class ParticleFilter {
public:
ParticleFilter(int num_particles) {
// 初始化粒子
particles_.resize(num_particles);
for (int i = 0; i < num_particles; ++i) {
Particle &p = particles_[i];
p.x = 0.0;
p.y = 0.0;
p.theta = 0.0;
p.weight = 1.0 / num_particles;
}
// 设置随机数生成器
random_device rd;
gen_ = default_random_engine(rd());
normal_dist_ = normal_distribution<double>(0.0, 1.0);
}
// 更新粒子状态
void Predict(const Control &control, double dt) {
for (auto &p : particles_) {
// 根据控制输入和运动模型更新粒子状态
p.x += control.v * cos(p.theta) * dt;
p.y += control.v * sin(p.theta) * dt;
p.theta += control.w * dt + normal_dist_(gen_) * 0.1;
}
}
// 融合观测信息
void Update(const vector<Observation> &observations) {
for (auto &p : particles_) {
// 将观测信息变换到粒子坐标系下
vector<Observation> transformed_observations;
for (const auto &obs : observations) {
Observation t_obs;
t_obs.x = obs.x * cos(p.theta) + obs.y * sin(p.theta) + p.x;
t_obs.y = -obs.x * sin(p.theta) + obs.y * cos(p.theta) + p.y;
transformed_observations.push_back(t_obs);
}
// 计算粒子权重
p.weight = 1.0;
for (const auto &t_obs : transformed_observations) {
double dx = t_obs.x - p.x;
double dy = t_obs.y - p.y;
double dist = sqrt(dx*dx + dy*dy);
p.weight *= exp(-0.5 * dist*dist / sigma_*sigma_);
}
}
// 归一化权重
double sum_weight = 0.0;
for (const auto &p : particles_) {
sum_weight += p.weight;
}
for (auto &p : particles_) {
p.weight /= sum_weight;
}
}
// 重新采样
void Resample() {
vector<Particle> new_particles(particles_.size());
uniform_real_distribution<double> uni_dist(0.0, 1.0);
double beta = 0.0;
int index = 0;
for (int i = 0; i < particles_.size(); ++i) {
beta += uni_dist(gen_) * 2.0;
while (beta > particles_[index].weight) {
beta -= particles_[index].weight;
index = (index + 1) % particles_.size();
}
new_particles[i] = particles_[index];
new_particles[i].weight = 1.0 / particles_.size();
}
particles_ = new_particles;
}
// 获取粒子坐标系下的位姿
vector<double> GetPose() const {
double x = 0.0;
double y = 0.0;
double sin_theta = 0.0;
double cos_theta = 0.0;
for (const auto &p : particles_) {
x += p.x * p.weight;
y += p.y * p.weight;
sin_theta += sin(p.theta) * p.weight;
cos_theta += cos(p.theta) * p.weight;
}
double theta = atan2(sin_theta, cos_theta);
return {x, y, theta};
}
private:
vector<Particle> particles_;
default_random_engine gen_;
normal_distribution<double> normal_dist_;
double sigma_ = 0.1;
};
int main() {
// 初始化粒子滤波器
ParticleFilter pf(1000);
// 进行一次迭代
Control control = {1.0, 0.1};
double dt = 0.1;
pf.Predict(control, dt);
vector<Observation> observations = {{1.0, 0.0}, {0.0, 1.0}, {-1.0, 0.0}, {0.0, -1.0}};
pf.Update(observations);
pf.Resample();
// 获取估计的位姿
vector<double> pose = pf.GetPose();
cout << "Estimated pose: " << pose[0] << ", " << pose[1] << ", " << pose[2] << endl;
return 0;
}
```
以上代码实现了一次迭代的粒子滤波算法,包括控制输入、观测信息、权重计算、重采样等步骤。你可以根据实际需求进行修改和扩展。
阅读全文