rand_loader = DataLoader(dataset=RandomDataset(Training_labels, nrtrain), batch_size=batch_size, num_workers=0, shuffle=True)
时间: 2023-04-08 16:04:40 浏览: 143
这是一个关于数据加载的问题,我可以回答。这段代码是使用 PyTorch 中的 DataLoader 类来加载数据集,其中包括训练标签、训练数量、批次大小、工作线程数和是否打乱数据集等参数。这个函数的作用是将数据集分成多个批次,以便于模型训练。
相关问题
train_Datasets = TensorDataset(train_features.to(device), train_labels.to(device)) train_Loader = DataLoader(batch_size=batch_size, dataset=train_Datasets) val_Datasets = TensorDataset(val_features.to(device), val_labels.to(device)) val_Loader = DataLoader(batch_size=batch_size, dataset=val_Datasets)
这段代码是用来创建 PyTorch 中的数据集和数据加载器的。首先,我们将训练数据和标签转换为 Tensor,并将它们移到 GPU 上(如果存在)。然后,我们使用 `TensorDataset` 将数据和标签打包成一个数据集。接着,我们使用 `DataLoader` 创建一个数据加载器,它会将数据集分割成多个小批量,每个小批量包含 `batch_size` 个样本和对应的标签。这个数据加载器可以用于训练模型和评估模型在验证集上的性能。
# build dataset train_dataset = NERDataset(word_train, label_train, config) dev_dataset = NERDataset(word_dev, label_dev, config) # get dataset size train_size = len(train_dataset) # build data_loader train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True, collate_fn=train_dataset.collate_fn) dev_loader = DataLoader(dev_dataset, batch_size=config.batch_size, shuffle=True, collate_fn=dev_dataset.collate_fn) # Prepare model device = config.device model = BertNER.from_pretrained(config.bert_model, num_labels=len(config.label2id)) model.to(device)
上述代码是基于PyTorch框架构建命名实体识别模型的代码。它通过调用NERDataset类来构建训练集和验证集,并使用DataLoader类来创建数据批次,方便模型的训练和验证。同时,代码中使用了预训练的BERT模型,并根据标签数来初始化了一个BertNER模型,用于命名实体识别任务的训练。最后,将模型移动到指定的设备上(如GPU),并准备进行训练。
阅读全文