python爬虫如何突破滑块验证,请给出示例代码
时间: 2024-04-06 21:31:49 浏览: 56
突破滑块验证的方法有很多,其中一种比较常用的方法是模拟滑块的行为,将滑块拖动到指定位置。这里给出一个示例代码,使用Selenium和OpenCV库实现:
```python
import time
import cv2
import numpy as np
from selenium import webdriver
from selenium.webdriver import ActionChains
# 创建浏览器实例
driver = webdriver.Chrome()
# 打开目标网站
driver.get("https://www.example.com")
# 等待页面加载完成
time.sleep(2)
# 定位滑块元素
slider = driver.find_element_by_xpath("//div[@class='slider']")
# 获取滑块的截图
slider_screenshot = driver.get_screenshot_as_png()
slider_screenshot = cv2.imdecode(np.frombuffer(slider_screenshot, np.uint8), cv2.IMREAD_COLOR)
# 获取滑块的位置和大小
slider_location = slider.location
slider_size = slider.size
# 计算滑块的范围
slider_range = (
slider_location['x'],
slider_location['y'],
slider_location['x'] + slider_size['width'],
slider_location['y'] + slider_size['height']
)
# 定位背景图片元素
bg_img = driver.find_element_by_xpath("//div[@class='bg-img']")
# 获取背景图片的截图
bg_img_screenshot = driver.get_screenshot_as_png()
bg_img_screenshot = cv2.imdecode(np.frombuffer(bg_img_screenshot, np.uint8), cv2.IMREAD_COLOR)
# 获取背景图片的位置和大小
bg_img_location = bg_img.location
bg_img_size = bg_img.size
# 计算背景图片的范围
bg_img_range = (
bg_img_location['x'],
bg_img_location['y'],
bg_img_location['x'] + bg_img_size['width'],
bg_img_location['y'] + bg_img_size['height']
)
# 计算滑块在背景图片中的位置
slider_in_bg_img_location = (
slider_location['x'] - bg_img_location['x'],
slider_location['y'] - bg_img_location['y']
)
# 根据滑块位置在背景图片中切割出滑块图片
slider_img = bg_img_screenshot[
slider_in_bg_img_location[1]:slider_in_bg_img_location[1] + slider_size['height'],
slider_in_bg_img_location[0]:slider_in_bg_img_location[0] + slider_size['width']
]
# 使用OpenCV库进行滑块图片的灰度化和二值化
slider_img_gray = cv2.cvtColor(slider_img, cv2.COLOR_BGR2GRAY)
slider_img_binary = cv2.threshold(slider_img_gray, 1, 255, cv2.THRESH_BINARY)[1]
# 获取滑块图片中的轮廓
_, contours, _ = cv2.findContours(slider_img_binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 获取滑块的轮廓
slider_contour = max(contours, key=cv2.contourArea)
# 定义滑动距离和滑动轨迹
distance = slider_range[2] - slider_range[0] - slider_contour.shape[1]
track = []
# 定义滑动的加速度
a1 = 2
a2 = -3
# 计算滑动轨迹
for t in range(1, 11):
s = int(a1 / 2 * t ** 2)
track.append(s)
for t in range(11, 20):
s = int(a2 / 2 * t ** 2 + 14 * a1 * t - 154)
track.append(s)
# 模拟鼠标拖动滑块
action = ActionChains(driver)
action.click_and_hold(slider).perform()
for t in track:
x = t + slider_contour.shape[1] + 5
action.move_by_offset(x, 0).perform()
time.sleep(0.5)
action.release().perform()
# 关闭浏览器
driver.close()
```
这段代码的主要思路是先获取滑块和背景图片的截图,然后使用OpenCV库对滑块的图片进行灰度化和二值化处理,获取滑块的轮廓。然后根据轮廓计算滑动距离和滑动轨迹,最后使用Selenium库模拟鼠标拖动滑块完成验证。
阅读全文