class CumulativeLayerNorm(nn.LayerNorm): def __init__(self, dim, elementwise_affine=True): super(CumulativeLayerNorm, self).__init__( dim, elementwise_affine=elementwise_affine) def forward(self, x): # x: N x C x L # N x L x C x = torch.transpose(x, 1, 2) # N x L x C == only channel norm x = super().forward(x) # N x C x L x = torch.transpose(x, 1, 2) return x def select_norm(norm, dim): if norm not in ['gln', 'cln', 'bn']: if xdrlib.dim() != 3: raise RuntimeError("{} accept 3D tensor as input".format(Self.__name__)) if norm == 'gln': return GlobalLayerNorm(dim, elementwise_affine=True) if norm == 'cln': return CumulativeLayerNorm(dim, elementwise_affine=True) else: return nn.BatchNorm1d(dim)
时间: 2023-12-05 14:04:48 浏览: 188
这段代码是一个 PyTorch 实现的自定义归一化层,其中包括了三种不同的归一化方式:Global Layer Norm(GLN)、Cumulative Layer Norm(CLN)和 Batch Norm(BN)。其中,GLN 是全局归一化,CLN 是累积归一化,BN 是批量归一化。这个代码中的 select_norm 函数可以根据传入的参数选择不同的归一化方式,并返回相应的层。其中,GLN 和 BN 都是 PyTorch 自带的归一化层,而 CLN 则是开发者自己实现的一种归一化方式。
相关问题
def __init__(self, dim, eps=1e-05, elementwise_affine=True): super(GlobalLayerNorm, self).__init__() self.dim = dim self.eps = eps self.elementwise_affine = elementwise_affine if self.elementwise_affine: self.weight = nn.Parameter(torch.ones(self.dim, 1)) self.bias = nn.Parameter(torch.zeros(self.dim, 1)) else: self.register_parameter('weight', None) self.register_parameter('bias', None)、
这段代码是关于全局层标准化(Global Layer Normalization)的实现。它定义了一个名为GlobalLayerNorm的类,继承自nn.Module。该类的初始化方法__init__中包含三个参数:dim表示输入张量的维度,eps表示为避免分母为0而加上的一个小数,elementwise_affine表示是否对每个通道都进行仿射变换。
在该类的初始化方法中,首先调用了父类nn.Module的初始化方法,然后将dim、eps、elementwise_affine分别赋给了该类的属性。如果elementwise_affine为True,则初始化可学习的参数weight和bias,分别为一个形状为(dim,1)的全1张量和一个形状为(dim,1)的全0张量;否则将weight和bias设置为None。最后通过调用register_parameter方法将weight和bias注册为可训练的参数。
请解释此段代码class GATrainer(): def __init__(self, input_A, input_B): self.program = fluid.default_main_program().clone() with fluid.program_guard(self.program): self.fake_B = build_generator_resnet_9blocks(input_A, name="g_A")#真A-假B self.fake_A = build_generator_resnet_9blocks(input_B, name="g_B")#真B-假A self.cyc_A = build_generator_resnet_9blocks(self.fake_B, "g_B")#假B-复原A self.cyc_B = build_generator_resnet_9blocks(self.fake_A, "g_A")#假A-复原B self.infer_program = self.program.clone() diff_A = fluid.layers.abs( fluid.layers.elementwise_sub( x=input_A, y=self.cyc_A)) diff_B = fluid.layers.abs( fluid.layers.elementwise_sub( x=input_B, y=self.cyc_B)) self.cyc_loss = ( fluid.layers.reduce_mean(diff_A) + fluid.layers.reduce_mean(diff_B)) * cycle_loss_factor #cycle loss self.fake_rec_B = build_gen_discriminator(self.fake_B, "d_B")#区分假B为真还是假 self.disc_loss_B = fluid.layers.reduce_mean( fluid.layers.square(self.fake_rec_B - 1))###优化生成器A2B,所以判别器结果越接近1越好 self.g_loss_A = fluid.layers.elementwise_add(self.cyc_loss, self.disc_loss_B) vars = [] for var in self.program.list_vars(): if fluid.io.is_parameter(var) and var.name.startswith("g_A"): vars.append(var.name) self.param = vars lr = 0.0002 optimizer = fluid.optimizer.Adam( learning_rate=fluid.layers.piecewise_decay( boundaries=[ 100 * step_per_epoch, 120 * step_per_epoch, 140 * step_per_epoch, 160 * step_per_epoch, 180 * step_per_epoch ], values=[ lr, lr * 0.8, lr * 0.6, lr * 0.4, lr * 0.2, lr * 0.1 ]), beta1=0.5, name="g_A") optimizer.minimize(self.g_loss_A, parameter_list=vars)
这段代码定义了一个 GATrainer 类,用于训练图像转换模型 CycleGAN 中的生成器模型 g_A。在初始化函数中,它使用 PaddlePaddle 框架的 fluid.default_main_program() 函数克隆默认的主程序,并使用 with fluid.program_guard() 语句将克隆的程序设置为默认程序。接下来,它定义了四个生成器模型:self.fake_B、self.fake_A、self.cyc_A 和 self.cyc_B。其中,self.fake_B 和 self.fake_A 分别将输入的图像 input_A 和 input_B 转换为假的图像。self.cyc_A 和 self.cyc_B 则将生成的假图像 self.fake_B 和 self.fake_A 分别还原回原始图像 input_A 和 input_B。然后,它定义了一个 inference 程序,用于测试模型。接着,它计算了循环一致性损失和生成器损失。循环一致性损失是指将生成的假图像还原为原始图像的损失。生成器损失是指通过判别器模型将生成的假图像区分为真实图像或假图像的损失。最后,它定义了一个优化器,使用 Adam 优化算法对生成器模型进行优化,以最小化生成器损失。
阅读全文