centroids[i] = X[np.random.randint(0,m+1),:]
时间: 2024-05-29 17:15:50 浏览: 69
这段代码是用于随机初始化 K-means 算法中的聚类中心(centroids),其中 np.random.randint(0,m+1) 会随机生成一个 0 到 m+1(不包含m+1)之间的整数,表示从数据集 X 中随机选择一个样本作为第 i 个聚类中心。代码中的 X 代表数据集,m 表示数据集中样本的个数,而每个样本的维度则由冒号后面的部分表示。
相关问题
代码改进:import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.datasets import make_blobs def distEclud(arrA,arrB): #欧氏距离 d = arrA - arrB dist = np.sum(np.power(d,2),axis=1) #差的平方的和 return dist def randCent(dataSet,k): #寻找质心 n = dataSet.shape[1] #列数 data_min = dataSet.min() data_max = dataSet.max() #生成k行n列处于data_min到data_max的质心 data_cent = np.random.uniform(data_min,data_max,(k,n)) return data_cent def kMeans(dataSet,k,distMeans = distEclud, createCent = randCent): x,y = make_blobs(centers=100)#生成k质心的数据 x = pd.DataFrame(x) m,n = dataSet.shape centroids = createCent(dataSet,k) #初始化质心,k即为初始化质心的总个数 clusterAssment = np.zeros((m,3)) #初始化容器 clusterAssment[:,0] = np.inf #第一列设置为无穷大 clusterAssment[:,1:3] = -1 #第二列放本次迭代点的簇编号,第三列存放上次迭代点的簇编号 result_set = pd.concat([pd.DataFrame(dataSet), pd.DataFrame(clusterAssment)],axis = 1,ignore_index = True) #将数据进行拼接,横向拼接,即将该容器放在数据集后面 clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m): dist = distMeans(dataSet.iloc[i,:n].values,centroids) #计算点到质心的距离(即每个值到质心的差的平方和) result_set.iloc[i,n] = dist.min() #放入距离的最小值 result_set.iloc[i,n+1] = np.where(dist == dist.min())[0] #放入距离最小值的质心标号 clusterChanged = not (result_set.iloc[:,-1] == result_set.iloc[:,-2]).all() if clusterChanged: cent_df = result_set.groupby(n+1).mean() #按照当前迭代的数据集的分类,进行计算每一类中各个属性的平均值 centroids = cent_df.iloc[:,:n].values #当前质心 result_set.iloc[:,-1] = result_set.iloc[:,-2] #本次质心放到最后一列里 return centroids, result_set x = np.random.randint(0,100,size=100) y = np.random.randint(0,100,size=100) randintnum=pd.concat([pd.DataFrame(x), pd.DataFrame(y)],axis = 1,ignore_index = True) #randintnum_test, randintnum_test = kMeans(randintnum,3) #plt.scatter(randintnum_test.iloc[:,0],randintnum_test.iloc[:,1],c=randintnum_test.iloc[:,-1]) #result_test,cent_test = kMeans(data, 4) cent_test,result_test = kMeans(randintnum, 3) plt.scatter(result_test.iloc[:,0],result_test.iloc[:,1],c=result_test.iloc[:,-1]) plt.scatter(cent_test[:,0],cent_test[:,1],color = 'red',marker = 'x',s=100)
这段代码实现的是k-means聚类算法,但是有一些地方可以改进:
1. 函数kMeans中的createCent参数可以通过修改为直接传入质心的方式来更加灵活。
2. 函数kMeans中的distMeans参数可以修改为scipy库中的距离函数,如scipy.spatial.distance.cdist,来提高计算效率。
3. 函数kMeans中的clusterAssment可以使用pd.DataFrame来进行初始化,这样可以避免使用np.zeros和np.inf来进行初始化。
改进后的代码如下:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from scipy.spatial.distance import cdist
def randCent(dataSet, k):
"""
随机生成k个质心
"""
n = dataSet.shape[1] # 列数
data_min = dataSet.min()
data_max = dataSet.max()
# 生成k行n列处于data_min到data_max的质心
data_cent = np.random.uniform(data_min, data_max, (k, n))
return data_cent
def kMeans(dataSet, k, createCent=randCent, distMeans=cdist):
"""
k-means聚类算法
"""
centroids = createCent(dataSet, k) # 初始化质心,k即为初始化质心的总个数
result_set = pd.concat([pd.DataFrame(dataSet), pd.DataFrame()], axis=1, ignore_index=True)
# 将数据进行拼接,横向拼接,即将该容器放在数据集后面
clusterChanged = True
while clusterChanged:
clusterChanged = False
dist = distMeans(dataSet, centroids, metric='euclidean')
clusterAssment = np.argmin(dist, axis=1)
result_set.iloc[:, -1] = pd.Series(clusterAssment)
for i in range(k):
cent_df = result_set[result_set.iloc[:, -1] == i].mean() # 按照当前迭代的数据集的分类,进行计算每一类中各个属性的平均值
if not cent_df.empty:
centroids[i] = cent_df.iloc[:-1].values # 当前质心
clusterChanged = True
return centroids, result_set
x = np.random.randint(0, 100, size=100)
y = np.random.randint(0, 100, size=100)
randintnum = pd.concat([pd.DataFrame(x), pd.DataFrame(y)], axis=1, ignore_index=True)
cent_test, result_test = kMeans(randintnum, 3)
plt.scatter(result_test.iloc[:, 0], result_test.iloc[:, 1], c=result_test.iloc[:, -1])
plt.scatter(cent_test[:, 0], cent_test[:, 1], color='red', marker='x', s=100)
```
plt.scatter(centroids[:, 0],
据引用和引用[2]中的内容,可以得知plt.scatter()函数用于绘制散点图,其中centroids[:, 0]表示散点图中点的x坐标,而y坐标需要根据具体情况进行填写。如果是绘制数据集中的点,则可以使用data[:,1]表示y坐标,如果是绘制聚类中心点,则需要根据具体情况填写y坐标的值。
示例代码如下:
```python
import numpy as np
import matplotlib.pyplot as plt
# 随机生成100个点的数据集
data = np.random.randint(low=1, high=30, size=(100, 2))
# 随机生成3个聚类中心点
centroids = np.random.randint(low=1, high=30, size=(3, 2))
# 绘制数据集中的点
plt.scatter(data[:, 0], data[:, 1], s=50, c='b', alpha=0.5)
# 绘制聚类中心点
plt.scatter(centroids[:, 0], [10, 20, 30], s=200, c='r', marker='*', alpha=0.8)
plt.title('scatter diagram', fontsize=20, c='r')
plt.show()
```
在上述代码中,我们随机生成了100个点的数据集和3个聚类中心点,然后使用plt.scatter()函数绘制了数据集中的点和聚类中心点。其中,centroids[:, 0]表示聚类中心点的x坐标,而y坐标分别为10、20、30。
阅读全文