train_res_recon_error_smooth = savgol_filter(train_res_recon_error, 201, 7)
时间: 2023-07-22 16:13:54 浏览: 173
这是一个使用Savitzky-Golay滤波器对train_res_recon_error数据进行平滑处理的代码。具体来说,它使用了一个窗口大小为201个数据点和一个多项式阶数为7的滤波器来平滑数据,并将结果存储在train_res_recon_error_smooth中。这种平滑处理通常用于减少噪声和提高信号的可读性。
相关问题
def train(images, labels, epoch, training_mode): with tf.GradientTape() as tape: if training_mode == 'full': predictions = bc_model(images) elif training_mode == 'latent': z, _, _ = cmvae_model.encode(images) predictions = bc_model(z) elif training_mode == 'reg': z = reg_model(images) predictions = bc_model(z) recon_loss = tf.reduce_mean(compute_loss(labels, predictions)) gradients = tape.gradient(recon_loss, bc_model.trainable_variables) optimizer.apply_gradients(zip(gradients, bc_model.trainable_variables)) train_loss_rec_v(recon_loss)
这段代码实现了一个模型的训练过程,训练的是一个基于条件变分自编码器(CMVAE)的卷积神经网络(CNN),可以在完全训练模式、潜变量训练模式和正则化训练模式下进行。这里的`bc_model`是一个卷积神经网络模型,`cmvae_model`是一个条件变分自编码器模型,`reg_model`是一个正则化模型。`compute_loss`是一个计算损失函数的函数。
在训练过程中,首先根据训练模式(`training_mode`)选择不同的模型进行预测(`predictions = bc_model(images)`),然后计算预测结果与标签数据的损失(`recon_loss = tf.reduce_mean(compute_loss(labels, predictions))`)。接着,使用`tf.GradientTape`记录损失函数对模型参数的梯度,然后使用优化器(`optimizer`)对模型参数进行更新,使得模型能够更好地拟合数据。最后,将损失函数值记录在一个变量中(`train_loss_rec_v(recon_loss)`),以便进行可视化和监控训练过程中的损失变化。
现已用pytorch代码写好了VAE的两个编码器:1个3层的MLP对形状为(16968,12,307,2)的v_w数据集进行速度和星期特征的相关性计算,另一个是2层的GAT对形状为(16968,12,307,2)的v_d数据集进行速度和度特征的相关性计算。分别编码后送入进行拼接计算隐变量均值和方差,再将隐变量计算送入解码器得到recon_x。最后将这个recon_x和真实的x送入2维卷积构成的GRU模块生成最终的预测值。上述模块均已构建好,请你按照这个思路,帮我用pytorch定义一个def epoch_train_with_batch(train_flow_input, train_target, batch_size):,最终返回return sum(train_loss)/len(train_loss),sum(train_loss_vae)/len(train_loss_vae)
好的,根据你的描述,我尝试编写了一个`epoch_train_with_batch`函数,如下所示:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from torch.nn.utils.rnn import pack_padded_sequence
import numpy as np
# 定义VAE编码器
class MLP(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
class GAT(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(GAT, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
class VAE(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(VAE, self).__init__()
self.encoder1 = MLP(input_size[2]*input_size[3], hidden_size, output_size)
self.encoder2 = GAT(input_size[2]*input_size[3], hidden_size, output_size)
self.fc1 = nn.Linear(2*output_size, output_size)
self.fc21 = nn.Linear(output_size, output_size)
self.fc22 = nn.Linear(output_size, output_size)
self.fc3 = nn.Linear(output_size, 2*output_size)
self.decoder = nn.Linear(output_size, input_size[2]*input_size[3])
def encode(self, x1, x2):
h1 = self.encoder1(x1.view(-1, x1.shape[2]*x1.shape[3]))
h2 = self.encoder2(x2.view(-1, x2.shape[2]*x2.shape[3]))
h = torch.cat([h1, h2], dim=1)
h = torch.relu(self.fc1(h))
return self.fc21(h), self.fc22(h)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
def decode(self, z):
h = torch.relu(self.fc3(z))
h = self.decoder(h)
return h.view(-1, input_size[2], input_size[3])
def forward(self, x1, x2):
mu, logvar = self.encode(x1, x2)
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
# 定义GRU模块
class GRU(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(GRU, self).__init__()
self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
self.fc1 = nn.Linear(hidden_size, 2)
self.conv = nn.Conv2d(1, 1, (2,2))
def forward(self, x):
h, _ = self.gru(x) # h shape: (batch_size, seq_len, hidden_size)
h = self.fc1(h[:, -1, :]) # 取最后一个时间步的输出
h = h.unsqueeze(1) # h shape: (batch_size, 1, 2)
h = self.conv(h) # h shape: (batch_size, 1, 1, 1)
return h.view(-1)
def epoch_train_with_batch(train_flow_input, train_target, batch_size):
# 超参数
hidden_size = 128
latent_dim = 32
num_epochs = 10
learning_rate = 0.001
# 数据处理
train_dataset = TensorDataset(torch.Tensor(train_flow_input), torch.Tensor(train_target))
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# 模型定义
model = VAE(train_flow_input.shape, hidden_size, latent_dim)
gru_model = GRU(latent_dim, 64, 2)
# 损失函数和优化器
criterion_vae = nn.MSELoss()
criterion_gru = nn.MSELoss()
optimizer = optim.Adam(list(model.parameters()) + list(gru_model.parameters()), lr=learning_rate)
# 训练循环
train_loss = []
train_loss_vae = []
for epoch in range(num_epochs):
for i, (x, y) in enumerate(train_loader):
optimizer.zero_grad()
x1 = x[:, :, :, 0] # 取速度特征
x2 = x[:, :, :, 1] # 取星期特征
recon_x, mu, logvar = model(x1, x2)
loss_vae = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
loss_vae /= batch_size * train_flow_input.shape[1]
loss = criterion_vae(recon_x, x1) + loss_vae
loss.backward()
optimizer.step()
train_loss.append(loss.item())
train_loss_vae.append(loss_vae.item())
# 计算GRU模型的损失
z = gru_model(mu.unsqueeze(0))
loss_gru = criterion_gru(z, y)
optimizer.zero_grad()
loss_gru.backward()
optimizer.step()
return sum(train_loss)/len(train_loss), sum(train_loss_vae)/len(train_loss_vae)
```
这段代码定义了一个`VAE`模型和一个`GRU`模型,分别用于特征编码和序列预测。训练循环中,首先对于每个batch,计算VAE模型的损失和梯度,并进行反向传播和优化;然后计算GRU模型的损失和梯度,并进行反向传播和优化。最后返回训练损失和VAE损失的均值。请注意,这段代码可能需要根据具体情况进行修改。
阅读全文