多元回归分析python
时间: 2023-08-27 07:19:37 浏览: 113
Python可以使用多种库来进行logistic回归分析,其中比较常用的是scikit-learn和statsmodels。
使用scikit-learn进行logistic回归分析的步骤如下:
1. 导入库和数据
```
import pandas as pd
from sklearn.linear_model import LogisticRegression
data = pd.read_csv('data.csv')
```
2. 准备数据
```
X = data[['feature1', 'feature2', ...]]
y = data['target']
```
3. 拟合模型
```
model = LogisticRegression()
model.fit(X, y)
```
4. 预测
```
y_pred = model.predict(X)
```
使用statsmodels进行logistic回归分析的步骤如下:
1. 导入库和数据
```
import pandas as pd
import statsmodels.api as sm
data = pd.read_csv('data.csv')
```
2. 准备数据
```
X = data[['feature1', 'feature2', ...]]
y = data['target']
```
3. 拟合模型
```
X = sm.add_constant(X)
model = sm.Logit(y, X)
result = model.fit()
```
4. 预测
```
y_pred = result.predict(X)
```
阅读全文
相关推荐


















