import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #解决中文乱码 df=pd.read_excel('体温.xls') #导入Excel文件 #折线图 x=df['日期'] #x轴数据 y=df['体温'] #y轴数据 plt.plot(x,y,color='m',linestyle='-',marker='o',mfc='w') plt.xlabel('2020年2月') #x轴标题 plt.ylabel('基础体温') #y轴标题 #图表标题 plt.title('14天基础体温曲线图',fontsize='18') #设置x轴刻度及标签 dates=['1日','2日','3日','4日','5日', '6日','7日','8日','9日','10日', '11日','12日','13日','14日'] plt.xticks(range(1,15,1),dates) plt.yticks([35.4,35.6,35.8,36,36.2,36.4,36.6,36.8, 37,37.2,37.4,37.6,37.8,38]) for a,b in zip(x,y): plt.text(a,b+0.05,'%.1f'%b,ha = 'center',va = 'bottom',fontsize=9) #图例 plt.legend() #绘制一个两端缩进的箭头 plt.annotate('最高体温', xy=(9,37.1), xytext=(10.5,37.1), xycoords='data', arrowprops=dict(facecolor='r', shrink=0.05)) plt.show()。这段代码有什么错误吗
时间: 2023-08-20 21:06:18 浏览: 214
这段代码看起来没有明显的错误,但是还可以进行一些改进和优化。
以下是一些可能的改进和建议:
1. 确保文件路径正确:请确保当前目录下存在名为'体温.xls'的Excel文件,或者根据需要修改文件路径。
2. 设置图例标签:在代码中使用了`plt.legend()`来显示图例,但是需要在`plt.plot()`函数中添加`label`参数来指定每条曲线的标签,例如`label='体温曲线'`,以便正确显示图例。
3. 添加坐标轴范围:可以使用`plt.xlim()`和`plt.ylim()`来设置x轴和y轴的显示范围,以确保图形能够完整显示。
4. 设置字体大小:可以使用`plt.rcParams['font.size']`来设置全局字体大小,以替代每个标题和标签的独立设置。
5. 调整箭头位置:根据具体需求,可以调整箭头的位置和文本标注的位置,以获得更好的可视化效果。
请注意,在使用`plt.legend()`和`plt.annotate()`等函数时,需要提供相应的参数来指定图例和箭头的相关属性。
除此之外,代码看起来是可以正常运行的,并且绘制了一个基础体温的折线图。如果你遇到任何错误或问题,请提供相关错误提示或详细描述,以便更好地帮助你解决问题。
相关问题
import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import seaborn as sns import chardet
### 正确导入Python数据分析和可视化库的方法
为了进行高效的数据分析与可视化,在Python环境中正确安装并导入必要的库至关重要。以下是关于`numpy`, `pandas`, `matplotlib`, `seaborn` 和 `chardet` 的具体导入方法:
#### 导入库
在开始任何项目之前,确保已经安装了所需的软件包。如果尚未安装这些库,可以使用pip命令来完成安装。
```bash
pip install numpy pandas matplotlib seaborn chardet
```
一旦确认所需库已成功安装,则可以在脚本顶部按照如下方式依次引入各个模块:
```python
import numpy as np # 提供多维数组对象以及派生对象(如掩码数组、矩阵),并且支持大量的函数操作。
import pandas as pd # 数据处理和分析的核心工具之一;提供了DataFrame结构用于存储表格型数据集。
import matplotlib.pyplot as plt # Python中最流行的绘图库之一,能够创建静态、动态交互式的图表。
import seaborn as sns # 基于Matplotlib之上构建而成的统计图形库,简化了许多常见的统计数据可视化的实现过程。
import chardet # 自动检测字符编码类型的实用程序,对于读取未知编码格式文件非常有用。
```
设置字体以便正常显示中文标签和其他特殊符号也是重要的一步。可以通过修改`matplotlib`的相关参数来进行配置:
```python
plt.rcParams['font.sans-serif'] = 'SimHei' # 设置默认字体为黑体以支持中文显示
plt.rcParams['axes.unicode_minus'] = False # 解决负号无法正确显示的问题
```
上述代码片段展示了如何准备环境,使得后续的数据处理工作更加顺畅[^1]。
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus']=False %matplotlib inline
这段代码主要是进行Python数据分析所需要引入的常用库的导入和设置matplotlib图表显示中文的字体和解决负号显示问题,同时使用%matplotlib inline命令设置图表以内嵌形式显示在notebook页面中。其中,numpy是Python中处理科学计算的一个重要库,pandas是Python中用于数据分析的库,seaborn是基于matplotlib的数据可视化库,matplotlib是Python中常用的绘图库。
阅读全文
相关推荐

















