class Dataset: name='' def _init_(self,n): self.name=n def __len__(self): return len(self.name)。len是多少
时间: 2024-05-23 17:16:11 浏览: 175
这段代码中的 `len` 方法被重载了,它返回的是 `self.name` 的长度。因此,当创建一个 `Dataset` 对象并将字符串传递给它的构造函数时,该对象的长度将是该字符串的长度。例如,如果创建了一个名为 `ds` 的 `Dataset` 对象,并将字符串 `"Hello, world!"` 传递给它的构造函数,那么 `len(ds)` 的值将是 `13`。
相关问题
class Txt2ImgIterableBaseDataset(IterableDataset): ''' Define an interface to make the IterableDatasets for text2img data chainable ''' def __init__(self, num_records=0, valid_ids=None, size=256): super().__init__() self.num_records = num_records self.valid_ids = valid_ids self.sample_ids = valid_ids self.size = size print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.') def __len__(self): return self.num_records @abstractmethod def __iter__(self): pass解析
这是一个基于 PyTorch 的自定义数据集类 `Txt2ImgIterableBaseDataset`,继承自 `IterableDataset`。在实现自定义数据集时,通常需要重写 `__len__` 和 `__getitem__` 两个方法,但是对于大型数据集来说,使用 `IterableDataset` 可以提高数据加载的效率和速度。`Txt2ImgIterableBaseDataset` 类定义了一个接口,使得数据集对象可以通过链式调用的方式进行转换和处理。该类的构造函数中,`num_records` 表示数据集中的样本数量,`valid_ids` 表示可用的样本 id 列表,`size` 表示图像大小。`__len__` 方法返回数据集中的样本数量,`__iter__` 方法是一个抽象方法,需要在子类中实现。该类的主要作用是提供一个接口,使得数据集可以被链式处理和转换,便于数据处理和模型训练。
class MyDataset(Dataset): def _init__(self, train_path): self.train_path = train_path self.image_path = os.path.join(train_path, 'image') self.label_path = os.path.join(train_path, "label") self.image_path_list = os.listdir(self.image_path) def __getitem__(self, index) -> T_co: image_name = self.image_path_list[index] image_path = os.path.join(self.image_path, image_name) img = cv.imread(image_path) label_name = 'txt'.join(image_name.rsplit(image_name.split('. ')[-1], 1)) label_path = os.path.join(self.label_path, label_name) label = read_label(label_path) return img,label def __len__(self): return Len(self.image_path_list) img, label = my_dataset[data_index]这段代码中img, label = my_dataset[data_index]为什么可以这样用
`img, label = my_dataset[data_index]` 这行代码使用了 Python 的序列解包(sequence unpacking)功能,将 `my_dataset[data_index]` 返回的元组解包成 `img` 和 `label` 两个变量。
在这里,`my_dataset` 是 MyDataset 类的一个实例,`data_index` 是一个整数,它作为索引被传递给 `my_dataset` 的 `__getitem__` 方法。由于 `__getitem__` 方法返回的是一个元组,因此可以使用序列解包将其拆分为两个变量 `img` 和 `label`。
最终,`img` 和 `label` 分别表示了该数据集中第 `data_index` 个图像的图像数据和标签数据。这样就可以使用这些数据进行训练或测试了。
阅读全文