par(mar = c(5, 4, 4, 8) + 0.1) plot(coef, xvar = "lambda", label = TRUE, main = "Marginal Model", type="l") abline(v = lam, lty = 2) significant_snps <- which(abs(coef) > 0.1)

时间: 2024-03-29 07:35:53 浏览: 107
这段代码是在 R 语言中用于绘制线性回归模型系数图的函数。具体解释如下: - `par(mar = c(5, 4, 4, 8) + 0.1)`:设置绘图区域的边距,`mar` 表示四个方向的边距大小,依次为下、左、上、右。这里将左边距增加 0.1 个单位。 - `plot(coef, xvar = "lambda", label = TRUE, main = "Marginal Model", type="l")`:绘制线性回归模型系数图。`coef` 是系数向量,`xvar` 是横坐标变量名称,这里为 `"lambda"`;`label = TRUE` 表示在图中显示系数的名称;`main` 为图的标题,这里为 `"Marginal Model"`;`type="l"` 表示绘制折线图。 - `abline(v = lam, lty = 2)`:在图中绘制一条垂直于 x 轴的虚线,表示指定的 `lam` 值。 - `significant_snps <- which(abs(coef) > 0.1)`:找出系数向量中绝对值大于 0.1 的元素所在的位置,将这些位置保存到 `significant_snps` 变量中。
相关问题

visualize results par(mar = c(5, 4, 4, 8) + 0.1) plot(coef, xvar = "lambda", label = TRUE, main = "Marginal Model") abline(v = lam, lty = 2) significant_snps <- which(abs(coef) > 0.1) points(z, col = "red", pch = 19, cex = 1.2)将上述代码转为使用ggplot2绘制的柱状图

以下是使用ggplot2绘制的柱状图代码: ``` library(ggplot2) # 创建数据框 df <- data.frame(xvar = "lambda", coef = coef) # 绘图 ggplot(df, aes(x = xvar, y = coef)) + geom_col(fill = "lightblue") + ggtitle("Marginal Model") + theme(plot.title = element_text(hjust = 0.5)) + geom_vline(xintercept = lam, linetype = "dashed") + geom_point(data = df[abs(df$coef) > 0.1, ], aes(x = xvar, y = coef), color = "red", size = 3) + labs(x = "", y = "Coefficient") + theme(axis.text.x = element_blank(), axis.ticks.x = element_blank(), axis.line.x = element_blank(), panel.grid.major.x = element_blank(), panel.grid.minor.x = element_blank(), axis.title.y = element_text(margin = margin(t = 0, r = 10, b = 0, l = 0))) ``` 说明:使用 `geom_col()` 绘制柱状图,使用 `ggtitle()` 设置标题,使用 `theme()` 调整图表主题,使用 `geom_vline()` 绘制垂直直线,使用 `geom_point()` 绘制散点图,使用 `labs()` 修改坐标轴标签,最后使用 `theme()` 再次调整图表主题。

# identify significant SNPs coef <- coef(fit) nz_idx <- which(coef != 0) nz_snps <- nz_idx - 1 # visualize results par(mar = c(5, 4, 4, 8) + 0.1) plot(coef, xvar = "lambda", label = TRUE, main = "Marginal Model") abline(v = lam, lty = 2) significant_snps <- which(abs(coef) > 0.1) points(z, col = "red", pch = 19, cex = 1.2)

这段代码的作用是在 R 语言中进行 Lasso 回归,然后可视化结果。具体来说,它完成以下几个任务: 1. 使用 `coef()` 函数获取 Lasso 回归的系数向量 `coef`。 2. 使用 `which()` 函数找到非零系数对应的 SNP 索引,存储在向量 `nz_idx` 中。 3. 由于 SNP 索引是从 0 开始的,需要将 `nz_idx` 中的值减去 1,得到真正的 SNP 索引,存储在向量 `nz_snps` 中。 4. 使用 `par()` 函数设置绘图区域的边距。 5. 使用 `plot()` 函数绘制 Lasso 回归系数随惩罚力度参数 $\lambda$ 的变化情况,其中 `xvar = "lambda"` 表示将 $\lambda$ 作为 x 轴变量,`label = TRUE` 表示在图中标记非零系数对应的 SNP。 6. 使用 `abline()` 函数在图中绘制一条竖直于 x 轴的虚线,表示选择的最优惩罚力度参数 $\lambda$。 7. 使用 `which()` 函数找到绝对值大于 0.1 的系数对应的 SNP,存储在向量 `significant_snps` 中。 8. 使用 `points()` 函数在图中标记出 `significant_snps` 中的 SNP,颜色为红色,符号为实心圆点,大小为 1.2。 需要注意的是,上述代码的可视化结果使用基础绘图函数 `plot()` 和 `points()`,而不是 `ggplot2`。如果你想使用 `ggplot2` 画出类似的图形,可以参考前面的示例代码。
阅读全文

相关推荐

set.seed(0) n = 50 p = 30 x = matrix(rnorm(n*p),nrow=n) bstar = c(runif(30,0.5,1)) mu = as.numeric(x%*%bstar) par(mar=c(4.5,4.5,0.5,0.5)) hist(bstar,breaks=30,col="gray",main="", xlab="True coefficients") library(MASS) set.seed(1) R = 100 nlam = 60 lam = seq(0,25,length=nlam) fit.ls = matrix(0,R,n) fit.rid = array(0,dim=c(R,nlam,n)) err.ls = numeric(R) err.rid = matrix(0,R,nlam) for (i in 1:R) { cat(c(i,", ")) y = mu + rnorm(n) ynew = mu + rnorm(n) a = lm(y~x+0) bls = coef(a) fit.ls[i,] = x%*%bls err.ls[i] = mean((ynew-fit.ls[i,])^2) aa = lm.ridge(y~x+0,lambda=lam) brid = coef(aa) fit.rid[i,,] = brid%*%t(x) err.rid[i,] = rowMeans(scale(fit.rid[i,,],center=ynew,scale=F)^2) } aveerr.ls = mean(err.ls) aveerr.rid = colMeans(err.rid) bias.ls = sum((colMeans(fit.ls)-mu)^2)/n var.ls = sum(apply(fit.ls,2,var))/n bias.rid = rowSums(scale(apply(fit.rid,2:3,mean),center=mu,scale=F)^2)/n var.rid = rowSums(apply(fit.rid,2:3,var))/n mse.ls = bias.ls + var.ls mse.rid = bias.rid + var.rid prederr.ls = mse.ls + 1 prederr.rid = mse.rid + 1 bias.ls var.ls p/n prederr.ls aveerr.ls cbind(prederr.rid,aveerr.rid) par(mar=c(4.5,4.5,0.5,0.5)) plot(lam,prederr.rid,type="l", xlab="Amount of shrinkage",ylab="Prediction error") abline(h=prederr.ls,lty=2) text(c(1,24),c(1.48,1.48),c("Low","High")) legend("topleft",lty=c(2,1), legend=c("Linear regression","Ridge regression")) par(mar=c(4.5,4.5,0.5,0.5)) plot(lam,mse.rid,type="l",ylim=c(0,max(mse.rid)), xlab=expression(paste(lambda)),ylab="") lines(lam,bias.rid,col="red") lines(lam,var.rid,col="blue") abline(h=mse.ls,lty=2) legend("bottomright",lty=c(2,1,1,1), legend=c("Linear MSE","Ridge MSE","Ridge Bias^2","Ridge Var"), col=c("black","black","red","blue")) 为每句代码加上注释解释

参考以下两段代码代码:第一段:# Lab5: Cross-Validation and the Bootstrap # The Validation Set Approach install.packages("ISLR") library(ISLR) set.seed(1) train=sample(392,196) lm.fit=lm(mpg~horsepower,data=Auto,subset=train) attach(Auto) mean((mpg-predict(lm.fit,Auto))[-train]^2) lm.fit2=lm(mpg~poly(horsepower,2),data=Auto,subset=train) mean((mpg-predict(lm.fit2,Auto))[-train]^2) lm.fit3=lm(mpg~poly(horsepower,3),data=Auto,subset=train) mean((mpg-predict(lm.fit3,Auto))[-train]^2) set.seed(2) train=sample(392,196) lm.fit=lm(mpg~horsepower,subset=train) mean((mpg-predict(lm.fit,Auto))[-train]^2) lm.fit2=lm(mpg~poly(horsepower,2),data=Auto,subset=train) mean((mpg-predict(lm.fit2,Auto))[-train]^2) lm.fit3=lm(mpg~poly(horsepower,3),data=Auto,subset=train) mean((mpg-predict(lm.fit3,Auto))[-train]^2) # Leave-One-Out Cross-Validation glm.fit=glm(mpg~horsepower,data=Auto) coef(glm.fit) lm.fit=lm(mpg~horsepower,data=Auto) coef(lm.fit) library(boot) glm.fit=glm(mpg~horsepower,data=Auto) cv.err=cv.glm(Auto,glm.fit) cv.err$delta cv.error=rep(0,5) for (i in 1:5){ glm.fit=glm(mpg~poly(horsepower,i),data=Auto) cv.error[i]=cv.glm(Auto,glm.fit)$delta[1] } cv.error第二段:library(caret) library(klaR) data(iris) splt=0.80 trainIndex <- createDataPartition(iris$Species,p=split,list=FALSE) data_train <- iris[ trainIndex,] data_test <- iris[-trainIndex,] model <- NaiveBayes(Species~.,data=data_train) x_test <- data_test[,1:4] y_test <- data_test[,5] predictions <- predict(model,x_test) confusionMatrix(predictions$class,y_test)。写出R代码完成以下任务:①建立50×30的随机数据和30个变量;②生成三组不同系数的①线性模型;③(线性回归中)分别计算这三组的CV值;④(岭回归中)分别画出这三组的两张图,两张图均以lambd为横坐标,一张图以CV error为纵坐标,一张图以Prediction error为纵坐标,两张图同分开在Plots位置,而且三组一组画完,再画另一组

大家在看

recommend-type

pjsip开发指南

pjsip是一个开源的sip协议栈,这个文档主要对sip开发的框架进行说明
recommend-type

KEMET_聚合物钽电容推介资料

KEMET_聚合物钽电容推介资料-内部资料,英文版!
recommend-type

变频器设计资料中关于驱动电路的设计

关于IGBT驱动电路设计!主要介绍了三菱智能模块的应用.
recommend-type

网络信息系统应急预案-网上银行业务持续性计划与应急预案

包含4份应急预案 网络信息系统应急预案.doc 信息系统应急预案.DOCX 信息系统(系统瘫痪)应急预案.doc 网上银行业务持续性计划与应急预案.doc
recommend-type

毕业设计&课设-MATLAB的光场工具箱.zip

matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随

最新推荐

recommend-type

(179722824)三相异步电机矢量控制仿真模型

三相异步电机矢量控制仿真模型。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

一次并发导致错误分析与总结

一次并发导致错误分析
recommend-type

025 - 快手直播词和控场话术.docx

025 - 快手直播词和控场话术
recommend-type

第4章 管理信息库2024v2.pdf

第4章 管理信息库2024v2
recommend-type

(178729196)pytorch人脸表情识别数据集(2w8训练集+7k测试集)

在本文中,我们将深入探讨如何使用PyTorch进行人脸表情识别。这个数据集包含28,000张训练图像和7,000张测试图像,专为Python开发人员设计,以研究和构建深度学习模型来理解人类的情绪。PyTorch是一个强大的深度学习框架,因其灵活性和易用性而被广泛采用,它提供了动态计算图的功能,便于构建和调试神经网络。 让我们了解人脸表情识别的基本概念。这是一个计算机视觉任务,旨在根据面部特征识别七种基本表情:高兴、悲伤、惊讶、恐惧、愤怒、厌恶和中立。这通常涉及到图像处理、特征提取和机器学习算法。 要开始使用这个数据集,你需要做以下步骤: 1. **数据预处理**:解压Datawhale_人脸情绪识别_数据集文件,然后对图像进行预处理。这可能包括调整大小、归一化像素值到0-1区间、以及数据增强,如随机翻转、裁剪或旋转,以增加模型的泛化能力。 2. **数据加载器**:使用PyTorch的`torch.utils.data.Dataset`和`DataLoader`类来创建自定义数据加载器。这将使你能批量加载数据,并在训练过程中高效地处理图像。 3. **模型构建**:选择一个适合任务的卷
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"