帮我编写基于python的,但不使用PyWavelets库的小波分解代码
时间: 2024-05-15 16:20:08 浏览: 103
好的,以下是基于Python的小波分解代码,但不使用PyWavelets库:
```python
import numpy as np
def wavelet_transform(signal, wavelet='haar', level=1):
# Define the wavelet filter coefficients
if wavelet == 'haar':
dec_lo = np.array([1, 1]) / np.sqrt(2)
dec_hi = np.array([1, -1]) / np.sqrt(2)
elif wavelet == 'db4':
dec_lo = np.array([0.482962913145, 0.836516303738, 0.224143868042, -0.129409522551])
dec_hi = np.array([-0.129409522551, -0.224143868042, 0.836516303738, -0.482962913145])
else:
raise ValueError('Unsupported wavelet')
# Perform the wavelet transform
coeffs = []
for i in range(level):
# Apply the low-pass and high-pass filters
cA = np.convolve(signal, dec_lo, mode='valid')[::2]
cD = np.convolve(signal, dec_hi, mode='valid')[::2]
coeffs.append(cD)
signal = cA
coeffs.append(signal)
coeffs.reverse()
return coeffs
```
希望这个代码对你有所帮助!
阅读全文