卡尔曼滤波建立模型,将两个风速预测值输出为1个预测值,观测矩阵H长度变为2宽度扩展一倍,其余所有矩阵长度均扩展1倍宽度均变为2的python实现
时间: 2024-05-12 16:14:55 浏览: 55
卡尔曼滤波算法实现
以下是一个简单的 Python 实现,其中使用了 NumPy 库进行矩阵操作:
```python
import numpy as np
# 建立模型
# 状态转移矩阵 A
A = np.array([[1, 1], [0, 1]])
# 控制矩阵 B
B = np.array([[1], [0]])
# 测量矩阵 H
H = np.array([[1, 0, 1, 0], [0, 1, 0, 1]])
# 状态协方差矩阵 P
P = np.array([[1, 0], [0, 1]])
# 过程噪声协方差矩阵 Q
Q = np.array([[0.001, 0], [0, 0.001]])
# 观测噪声协方差矩阵 R
R = np.array([[0.01, 0], [0, 0.01]])
# 预测
def predict(x, u):
x = np.dot(A, x) + np.dot(B, u)
P = np.dot(np.dot(A, P), A.T) + Q
return (x, P)
# 更新
def update(x, P, z):
y = z - np.dot(H, x)
S = np.dot(np.dot(H, P), H.T) + R
K = np.dot(np.dot(P, H.T), np.linalg.inv(S))
x = x + np.dot(K, y)
P = np.dot(np.eye(2) - np.dot(K, H), P)
return (x, P)
# 两个风速预测值
v1 = 10
v2 = 20
# 初始化状态向量 x
x = np.array([[v1], [v2]])
# 初始化控制向量 u
u = np.array([0])
# 初始化观测向量 z
z = np.array([[v1], [v2]])
# 迭代预测和更新
for i in range(10):
(x, P) = predict(x, u)
(x, P) = update(x, P, z)
print("第", i+1, "次迭代后的预测值为:", x[0][0])
```
需要注意的是,在代码中我们假设控制向量 u 始终为0,观测向量 z 始终等于两个风速预测值。如果需要根据实际情况修改代码,请参考卡尔曼滤波算法的详细说明。
阅读全文