解释以下代码:解释以下代码:import matplotlib.pyplot as plt import pandas as pd from sklearn.metrics import silhouette_score from sklearn.cluster import KMeans data=pd.read_excel('../数据表/1.xlsx') scores=[] #存放轮廓系数 distortions=[]#簇内误差平方和 SSE for i in range(2,30): Kmeans_model=KMeans(n_clusters=i, n_init=10) predict_=Kmeans_model.fit_predict(data) scores.append( silhouette_score(data,predict_)) distortions.append(Kmeans_model.inertia_) print("轮廓系数:",scores) print("簇内误差平方和:",distortions)

时间: 2024-02-26 19:53:17 浏览: 34
这段代码是用于对一个Excel数据表进行K-Means聚类算法,得到不同数量簇时的轮廓系数和簇内误差平方和。以下是代码的解释: 1. 首先导入了Matplotlib、pandas库和sklearn库中的metrics和cluster模块。 2. 通过pandas库读取Excel数据表"../数据表/1.xlsx"并将其存储在data变量中。 3. 创建了两个空列表scores和distortions,用于存储不同数量簇的轮廓系数和簇内误差平方和。 4. 循环从2到29,对于每个i: a. 创建一个KMeans模型,将其分为i个簇,并将其应用于数据集data。 b. 使用fit_predict方法得到每个数据点的簇标签。 c. 使用sklearn.metrics库中的silhouette_score方法计算所有数据点的轮廓系数,并将其存储在scores列表中。 d. 使用KMeans模型的inertia_属性计算簇内误差平方和(distortions),并将其存储在distortions列表中。 5. 最后,打印出所有不同数量簇时的轮廓系数和簇内误差平方和。
相关问题

import random import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.decomposition import PCA plt.rcParams['font.sans-serif'] = ['SimHei'] dataset=pd.read_excel('C:\\Users\\86180\\Desktop\\第一次数学建模\\湘菜口感好物质.xlsx') dataset = dataset.drop(dataset.index[:1], inplace=False) dataset = dataset.drop(dataset.columns[:1], axis=1, inplace=False) #matrix=dataset.values matrix=np.array(dataset) matrix=matrix.T matrix_xiang=matrix[:27] # 将NaN值替换为0 matrix_xiang = np.nan_to_num(matrix_xiang) # 检测矩阵中是否还有NaN值 这个代码报错TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''应如何修改

根据您提供的代码,错误出在尝试检测矩阵中是否还有NaN值时。出现错误的原因可能是矩阵中的元素类型不符合`np.isnan()`函数的要求。 为了解决这个问题,您可以尝试使用`np.isnan()`函数之前,先将矩阵的元素类型转换为浮点类型(float),然后再进行检测。下面是修改后的代码: ```python import random import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.decomposition import PCA plt.rcParams['font.sans-serif'] = ['SimHei'] dataset = pd.read_excel('C:\\Users\\86180\\Desktop\\第一次数学建模\\湘菜口感好物质.xlsx') dataset = dataset.drop(dataset.index[:1], inplace=False) dataset = dataset.drop(dataset.columns[:1], axis=1, inplace=False) matrix = np.array(dataset) matrix = matrix.T matrix_xiang = matrix[:27] # 将NaN值替换为0 matrix_xiang = np.nan_to_num(matrix_xiang.astype(float)) # 检测矩阵中是否还有NaN值 has_nan = np.isnan(matrix_xiang).any() if has_nan: print("矩阵中存在NaN值") else: print("矩阵中没有NaN值") ``` 在上述代码中,我使用`astype(float)`将矩阵的元素类型转换为浮点类型。然后,再对`matrix_xiang`进行NaN值的替换和检测。这样应该能够解决您遇到的问题。

import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans df = pd.read_csv(r"D:\数学建模\重航数学建模校赛\附件1(前50行).csv",encoding='gbk') # 文件目录加文件名 df.head() #定位数据 X = df.iloc[:,1:] X.head() # 标准化数据 from sklearn.preprocessing import StandardScaler scaler = StandardScaler() standX = scaler.fit_transform(X) standX # 肘部法则的可视化 from sklearn import metrics # 创建遍历,找到最合适的k值 scores = [] for k in range(2,150): labels = KMeans(n_clusters=k,n_init='auto').fit(X).labels_ score = metrics.silhouette_score(X,labels) scores.append(score) # 通过画图找出最合适的K值 plt.plot(list(range(2,150)),scores) plt.xlabel('Number of Clusters Initialized') plt.ylabel('Sihouette Score') plt.show()代码修改

import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler from sklearn import metrics df = pd.read_csv(r"D:\数学建模\重航数学建模校赛\附件1(前50行).csv",encoding='gbk') # 文件目录加文件名 X = df.iloc[:,1:] scaler = StandardScaler() standX = scaler.fit_transform(X) scores = [] for k in range(2,150): labels = KMeans(n_clusters=k,n_init='auto').fit(X).labels_ score = metrics.silhouette_score(X,labels) scores.append(score) plt.plot(list(range(2,150)),scores) plt.xlabel('Number of Clusters Initialized') plt.ylabel('Sihouette Score') plt.show()

相关推荐

import pandas as pd from sklearn.cluster import KMeans import matplotlib.pyplot as plt import numpy as np from sklearn.preprocessing import StandardScaler from sklearn import metrics beer=pd.read_csv('data.txt',encoding='gbk',sep='') X=beer[["calories","sodium","alcohol","cost"]] km=KMeans(n_clusters=3).fit(X) beer['cluster']=km.labels_ centers=km.cluster_centers_ plt.rcParams['font.size']=14 colors=np.array(['red','green','blue','yellow']) plt.scatter(beer["calories"], beer["alcohol"], c=colors[beer["cluster"]]) plt.scatter(centers[:,0], centers[:,2], linewidths=3,marker='+',s=300,c='black') plt.xlabel("Calories") plt.ylable("Alcohol") plt.suptitle("Calories and Alcohol") pd.plotting.scatter_matrix(beer[["calories", "sodium","alcohol","cost"]],s=100,alpha=1,c=colors[beer["cluster"]],figsize=(10,10)) plt.suptitle("original data") scaler=StandardScaler() X_scaled=scaler.fit_transform(X) km=KMeans(n_clusters=3).fit(X_scaled) beer["scaled_cluster"]=km.labels_ centers=km.cluster_centers_ pd.plotting.scatter_matrix(X, c=colors[beer.scaled_cluster],alpha=1,figsize=(10,10),s=100) plt.suptitle("standard data") score_scaled=metrics.silhouette_score(X, beer.scaled_cluster) score=metrics.silhouette_score(X, beer.cluster) print("得分为",score_scaled,score) scores=[] for k in range(2,20): labels=KMeans(n_clusters=k).fit(X).labels_ score=metrics.silhouette_score(X, labels) scores.append(score) for i in range(len(scores)): print((i+2,scores[i])) print(max(scores[i])) plt.figure() plt.plot(list(range(2,20)), scores,"ro") plt.xlabel("Number of Clusters Initialized") plt.ylabel("Sihouette Score") plt.suptitle("K parameter optimize") plt.show() scores=[] for k in range(2,20): labels=KMeans(n_clusters=k).fit(X_scaled).labels_ score=metrics.silhouette_score(X_scaled, labels) scores.append(score) for i in range(len(scores)): print((i+2,scores[i]))

import random import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score plt.rcParams['font.sans-serif'] = ['SimHei'] dataset=pd.read_excel('C:\\Users\\86180\\Desktop\\附件2整理.xlsx') dataset = dataset.drop(dataset.index[:1], inplace=False) dataset = dataset.drop(dataset.columns[:1], axis=1, inplace=False) #matrix=dataset.values matrix=np.array(dataset) matrix_xiang=matrix[:27] print(matrix_xiang[0]) print(matrix_xiang[-1]) print(matrix_xiang.shape) # matrix_chuan=matrix[-28:] # print(matrix_chuan[0]) # print(matrix_chuan[-1]) cluster_nums = range(2, 10) inertia_values = [] silhouette_scores = [] # 迭代不同聚类数量 for num in cluster_nums: # 创建K均值聚类模型 kmeans = KMeans(n_clusters=num) # 进行聚类 kmeans.fit(matrix_xiang) # 计算损失函数值和轮廓系数 inertia_values.append(kmeans.inertia_) silhouette_scores.append(silhouette_score(matrix_xiang, kmeans.labels_)) # 绘制肘部法则图像 plt.plot(cluster_nums, inertia_values, 'bo-') plt.xlabel('聚类数量') plt.ylabel('损失函数值') plt.title('肘部法则') plt.show() # 绘制轮廓系数图像 plt.plot(cluster_nums, silhouette_scores, 'ro-') plt.xlabel('聚类数量') plt.ylabel('轮廓系数') plt.title('轮廓系数') plt.show() kmeans = KMeans(n_clusters=7) # 进行聚类 kmeans.fit(matrix_xiang) labels = kmeans.labels_ # 打印每个食材的簇标签 for i, label in enumerate(labels): print(f"食材{i+1}的簇标签为:{label}")如何在这段代码中加入对聚类结果的评估和解释

import random import numpy as np import matplotlib.pyplot as plt 生成随机坐标点 def generate_points(num_points): points = [] for i in range(num_points): x = random.uniform(-10, 10) y = random.uniform(-10, 10) points.append([x, y]) return points 计算欧几里得距离 def euclidean_distance(point1, point2): return np.sqrt(np.sum(np.square(np.array(point1) - np.array(point2)))) K-means算法实现 def kmeans(points, k, num_iterations=100): num_points = len(points) # 随机选择k个点作为初始聚类中心 centroids = random.sample(points, k) # 初始化聚类标签和距离 labels = np.zeros(num_points) distances = np.zeros((num_points, k)) for i in range(num_iterations): # 计算每个点到每个聚类中心的距离 for j in range(num_points): for l in range(k): distances[j][l] = euclidean_distance(points[j], centroids[l]) # 根据距离将点分配到最近的聚类中心 for j in range(num_points): labels[j] = np.argmin(distances[j]) # 更新聚类中心 for l in range(k): centroids[l] = np.mean([points[j] for j in range(num_points) if labels[j] == l], axis=0) return labels, centroids 生成坐标点 points = generate_points(100) 对点进行K-means聚类 k_values = [2, 3, 4] for k in k_values: labels, centroids = kmeans(points, k) # 绘制聚类结果 colors = [‘r’, ‘g’, ‘b’, ‘y’, ‘c’, ‘m’] for i in range(k): plt.scatter([points[j][0] for j in range(len(points)) if labels[j] == i], [points[j][1] for j in range(len(points)) if labels[j] == i], color=colors[i]) plt.scatter([centroid[0] for centroid in centroids], [centroid[1] for centroid in centroids], marker=‘x’, color=‘k’, s=100) plt.title(‘K-means clustering with k={}’.format(k)) plt.show()import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris 载入数据集 iris = load_iris() X = iris.data y = iris.target K-means聚类 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) 可视化结果 plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.xlabel(‘Sepal length’) plt.ylabel(‘Sepal width’) plt.title(‘K-means clustering on iris dataset’) plt.show()对这个算法的结果用SSE,轮廓系数,方差比率准则,DBI几个指标分析

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

debugpy-1.0.0b3-cp37-cp37m-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、