group by python 不记算NP.NAN
时间: 2024-08-16 14:08:18 浏览: 75
在Python中,特别是在数据分析和处理缺失值的场景中,`groupby`函数通常用于Pandas库中,它能够按照指定列对数据进行分组。如果你想要忽略NaN(Not a Number,表示缺失值)并在`groupby`操作时不计算它们,你可以采取以下步骤:
1. 使用`dropna()`方法先删除含有NaN值的行,或者设置`as_index=False`让结果不保留原索引以避免NaN影响分组。
```python
df = df.dropna(subset=['column_to_group_by']) # 删除特定列中有NaN的行
# 或者
grouped = df.groupby('column_to_group_by', as_index=False).agg({col_to_aggregate: 'mean', ...}) # 忽略NaN
```
2. 如果你想在统计过程中跳过NaN,可以使用聚合函数时直接指定`skipna=True`,例如对于求平均数:
```python
grouped = df.groupby('column_to_group_by').agg({'numeric_column': 'mean', ...}, skipna=True)
```
请注意,在上述示例中,你需要将`column_to_group_by`替换为你要分组的实际列名,`numeric_column`替换为你想计算的数值型列名。
相关问题
用python优化它:这段代码什么意思:n=4 df = pd.DataFrame({'group': list('aabbabbbababaababbba'), 'value': [1,2,np.nan,2,4,np.nan,9,2,np.nan,3,7,6,8,np.nan,6,np.nan,np.nan,0,6,5]}) ndfa=df[df["group"] == "a"] ndfb=df[df["group"] == "b"] movingaverage1=[] movingaverage2=[] len1=len(ndfa["value"]) len2=len(ndfb["value"]) for i in range(1,len1+1): if i<=n: if True in np.array(np.isnan((ndfa[:1])["value"])): movingaverage1.append(0) else: sub_ndfa=ndfa[:i] sub_ndfa_withoutNaN=sub_ndfa[pd.notnull((sub_ndfa["value"]))]["value"] movingaverage1.append((sub_ndfa_withoutNaN.copy()).mean()) else: sub_ndfa=ndfa[i-n:i] sub_ndfa_withoutNaN=sub_ndfa[pd.notnull((sub_ndfa["value"]))]["value"] movingaverage1.append((sub_ndfa_withoutNaN.copy()).mean()) for i in range(1,len2+1): if i<=n: if True in np.array(np.isnan((ndfb[:1])["value"])): movingaverage2.append("0") else: sub_ndfb=ndfb[:i] sub_ndfb_withoutNaN=sub_ndfb[pd.notnull((sub_ndfb["value"]))]["value"] movingaverage2.append((sub_ndfb_withoutNaN.copy()).mean()) else: sub_ndfb=ndfb[i-n:i] sub_ndfb_withoutNaN=sub_ndfb[pd.notnull((sub_ndfb["value"]))]["value"] movingaverage2.append((sub_ndfb_withoutNaN.copy()).mean()) #确定顺序 astation=[] bstation=[] nlist=[] c=0 d=0 e=0 for i in df["group"]: if i=="a": astation.append(c) else: bstation.append(c) c+=1 for i in range(0,len1+len2): if i in astation: nlist.append(movingaverage1[d]) d+=1 else: nlist.append(movingaverage2[e]) e+=1 flist=pd.Series(nlist) print(flist)
这段代码实现了对DataFrame中按照"group"分组后,对"value"一列进行滑动平均的计算,并将计算结果存储在两个列表中(分别对应两个不同的"group")。
首先,将DataFrame按照"group"分成两个子集ndfa和ndfb。然后,分别对这两个子集的"value"一列计算滑动平均,计算方式是每次向前移动1个单位进行平均,如果当前位置与之前的(n-1)个位置有nan值,则将平均值设为0。最终,将每次计算的结果存储在两个不同的列表中,分别对应两个不同的"group"。
import pandas as pd import numpy as np import os import datetime import statsmodels.api as sm import scipy as sp import math import chardet def TS_SUM(series, number): number = int(number) n = range(0, number-1) shift=series for k in n: shift=shift.shift(1) series=series+shift return series def ExpoDecay(array,halflife,number,): halflife=int(halflife) d=math.pow(0.5,1/halflife) DecayWGT=np.logspace(0,number-1,number,base=d) return sum(array*DecayWGT)/sum(DecayWGT) def TS_AVERAGE(series, number): number = int(number) l = len(series) shift = pd.Series(series) for k in range(0, number-1): shift = shift.shift(1) series = series + shift series = series / number return series def TS_wgdStd(series, number, halflife): halflife = int(halflife) d = math.pow(0.5, 1 / halflife) DecayWGT = np.logspace(0, number - 1, number, base=d) avg = TS_AVERAGE(series, number) square = (series - avg) * (series - avg) print('正在计算DASTD') l=len(series) loop=range(0,l) loop=pd.Series(loop) result=[1]*l for k in loop: if k<number-1: result[k]=np.nan else: sub_square=square.iloc[k-number+1:k+1] result[k]=math.sqrt(np.average(sub_square,weights=DecayWGT)) return result #计算波动因子(DASTD) def DASTD(data): data=pd.DataFrame(data) data['DASTD']=data.groupby('code')['ret_td'].transform(lambda x: TS_wgdStd(x,250,halflife=40)) print(data['DASTD']) print('done') DASTD=data['DASTD'] return DASTD total=pd.read_csv(r"C:\Users\lenovo\Desktop\实习\python\所有数据.csv") pingan=total[total['code']=='000001.SZ'] pingan['DASTD']=TS_wgdStd(pingan['ret_td'],250,halflife=40) print(pingan)
你的代码中使用了一些自定义的函数来计算一些统计指标。在代码中,你定义了以下函数:
1. `TS_SUM(series, number)`: 用于计算时间序列的累加和,其中`series`表示时间序列数据,`number`表示累加的个数。
2. `ExpoDecay(array, halflife, number)`: 用于计算指数衰减加权均值,其中`array`表示输入的数组,`halflife`表示衰减半衰期,`number`表示计算的个数。
3. `TS_AVERAGE(series, number)`: 用于计算时间序列的移动平均值,其中`series`表示时间序列数据,`number`表示移动平均的窗口大小。
4. `TS_wgdStd(series, number, halflife)`: 用于计算时间序列的加权标准差,其中`series`表示时间序列数据,`number`表示计算加权标准差的窗口大小,`halflife`表示衰减半衰期。
5. `DASTD(data)`: 用于计算波动因子DASTD,其中`data`是一个DataFrame,包含了股票代码和收益率数据。
在代码中,你首先读取了一个CSV文件,并选取了股票代码为"000001.SZ"的数据进行处理。然后,你使用`TS_wgdStd`函数计算了该股票的DASTD值,并将其添加到了DataFrame中。
请注意,在使用`TS_wgdStd`函数计算DASTD时,你传入了一个Series作为参数,但该函数内部又调用了`TS_AVERAGE`函数来计算移动平均值。这样可能会导致在计算过程中出现警告或错误,请确保输入的数据和参数都符合函数的要求。
如果还有其他问题,请随时提问。
阅读全文