请用定义函数的方法用Keras框架来写一个CNN-BiLSTM模型进行电力时间序列数据预测,用电力具体数据代入,把数据处理模型训练以及预测方面写的详细一点
时间: 2024-02-21 22:57:25 浏览: 85
基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高 可用于做风电功率
好的,以下是一个基于Keras框架的CNN-BiLSTM模型进行电力时间序列数据预测的代码和详细说明:
首先,我们需要导入所需的库和模块:
```python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Conv1D, MaxPooling1D, LSTM, Bidirectional
from keras.optimizers import Adam
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
```
接着,我们需要加载电力时间序列数据并进行预处理,这里我们使用`MinMaxScaler`进行数据归一化:
```python
# 加载电力时间序列数据
data = np.loadtxt('power_data.csv', delimiter=',')
# 归一化数据
scaler = MinMaxScaler(feature_range=(0, 1))
data = scaler.fit_transform(data)
```
然后,我们需要定义一个函数来将数据转换为训练集和测试集,并将其转换为适合CNN-BiLSTM模型的格式:
```python
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), :]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return np.array(dataX), np.array(dataY)
# 将数据转换为训练集和测试集
train_size = int(len(data) * 0.67)
test_size = len(data) - train_size
train, test = data[0:train_size,:], data[train_size:len(data),:]
# 将数据转换为适合CNN-BiLSTM模型的格式
look_back = 60
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))
testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))
```
现在我们可以开始定义CNN-BiLSTM模型了,这里我们使用一个包含一个卷积层、一个最大池化层、一个LSTM层和一个全连接层的模型:
```python
def create_model():
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(look_back, 1)))
model.add(MaxPooling1D(pool_size=2))
model.add(Bidirectional(LSTM(50)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer=Adam(lr=0.001))
return model
model = create_model()
```
接着,我们可以使用训练集来训练模型:
```python
model.fit(trainX, trainY, epochs=100, batch_size=64, verbose=2)
```
最后,我们可以使用测试集来评估模型的性能并进行预测:
```python
# 评估模型的性能
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
trainScore = mean_squared_error(trainY[0], trainPredict[:,0])
testScore = mean_squared_error(testY[0], testPredict[:,0])
print('Train Score: %.2f MSE' % (trainScore))
print('Test Score: %.2f MSE' % (testScore))
# 进行预测
last60 = data[-60:]
last60 = scaler.transform(last60.reshape(-1, 1)).reshape(1, 60, 1)
prediction = model.predict(last60)
prediction = scaler.inverse_transform(prediction)
print('Next value: %.2f' % prediction)
```
这样,我们就完成了使用CNN-BiLSTM模型进行电力时间序列数据预测的代码。
阅读全文