import os import csv for files in os.walk("cleaned_datas_v2"): with open(files) as file: csv_reader = csv.reader(file) next(csv_reader) for row in csv_reader: print(row) Traceback (most recent call last): File "C:\Users\asus\PycharmProjects\pythonProject\main.py", line 4, in <module> with open(files) as file: TypeError: expected str, bytes or os.PathLike object, not tuple

时间: 2024-04-15 20:24:42 浏览: 160
您遇到的问题是由于`os.walk`返回的是一个元组,包含目录路径、子目录列表和文件列表。在使用`with open`打开文件时,需要传入文件的路径而不是元组。您可以使用`os.path.join`函数来拼接目录路径和文件名,然后打开文件。以下是修改后的代码示例: ```python import os import csv for root, dirs, files in os.walk("cleaned_datas_v2"): for file_name in files: file_path = os.path.join(root, file_name) with open(file_path) as file: csv_reader = csv.reader(file) next(csv_reader) for row in csv_reader: print(row) ``` 这样修改后,代码将遍历指定目录下的所有文件,并逐个打开进行处理。
相关问题

帮我看看我的代码是否低效:import csv import os from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained('nlptown/bert-base-multilingual-uncased-sentiment') model = AutoModelForSequenceClassification.from_pretrained('nlptown/bert-base-multilingual-uncased-sentiment') i = 0 directory = "cleaned_datas_v2" for file in os.listdir(directory): with open('cleaned_datas_v2/' + file) as csvFile: rows = csv.reader(csvFile) with open("scored_reviews.csv", 'w', encoding="utf-8", newline="") as f: writer = csv.writer(f) for row in rows: i += 1 tokens = tokenizer.encode(row[0], return_tensors='pt') result = model(tokens) row.append(str(int(torch.argmax(result.logits)) + 1)) print(i) writer.writerow(row)

根据你提供的代码,以下是几个可能的改进点: 1. 在每次循环中打开和关闭文件:你的代码在每次循环中都打开和关闭了一个新的输出文件。这样做会导致性能下降,并且每个文件只包含一个行。你可以在循环之外打开输出文件,并在循环结束后关闭它。 2. 写入模式:你使用的写入模式是`'w'`,这意味着每次循环都会覆盖之前的内容。如果你想将所有行写入同一个文件,可以使用`'a'`模式(追加模式)。 3. 缓冲区大小:在写入大量数据时,使用较大的缓冲区大小可以提高写入性能。你可以尝试添加`buffering`参数来设置缓冲区大小,例如`buffering=8192`。 4. 批量处理数据:你的代码一次只处理一个数据行,这样可能会导致较慢的处理速度。你可以尝试批量处理数据行,将多个行一起输入到Bert模型中进行推断。这样可以减少模型推断的次数,提高效率。 根据以上建议,下面是代码改进的示例: ```python import csv import os from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained('nlptown/bert-base-multilingual-uncased-sentiment') model = AutoModelForSequenceClassification.from_pretrained('nlptown/bert-base-multilingual-uncased-sentiment') directory = "cleaned_datas_v2" with open("scored_reviews.csv", 'w', encoding="utf-8", newline="", buffering=8192) as f: writer = csv.writer(f) i = 0 for file in os.listdir(directory): with open(os.path.join(directory, file)) as csvFile: rows = csv.reader(csvFile) for row in rows: i += 1 tokens = tokenizer.encode(row[0], return_tensors='pt') result = model(tokens) row.append(str(int(torch.argmax(result.logits)) + 1)) print(i) writer.writerow(row) ``` 请注意,这只是对你提供的代码的一种改进示例。具体效果还需要根据你的数据集大小和系统环境进行评估。

import csv import re # 打开CSV文件 with open('/Users/rachel_lrq/Desktop/浙江省海洋经济.csv', 'r', encoding='utf-8') as file: csv_reader = csv.reader(file) # 创建写入CSV文件的列表 cleaned_data = [] for row in csv_reader: # 对每一行的文本进行清洗 pattern = r':(.*)' cleaned_row = [re.search(pattern, text).group(1) if re.search(pattern, text) else '' for text in row] cleaned_data.append(cleaned_row) # 将清洗后的数据写入新的CSV文件 with open('/Users/rachel_lrq/Desktop/cleaned_data.csv', 'w', newline='', encoding='utf-8') as file: csv_writer = csv.writer(file) # 写入清洗后的数据 csv_writer.writerows(cleaned_data)

你的代码基本上是正确的,只是需要稍作修改。首先,你需要将正则表达式的模式 `r':(.*)'` 改为 `r'[^:]*:(.*)'`,这样可以确保匹配第一个冒号后的所有内容。此外,你还需要导入 `csv` 和 `re` 模块。 下面是修改后的代码: ```python import csv import re # 打开CSV文件 with open('/Users/rachel_lrq/Desktop/浙江省海洋经济.csv', 'r', encoding='utf-8') as file: csv_reader = csv.reader(file) # 创建写入CSV文件的列表 cleaned_data = [] for row in csv_reader: # 对每一行的文本进行清洗 pattern = r'[^:]*:(.*)' cleaned_row = [re.search(pattern, text).group(1) if re.search(pattern, text) else '' for text in row] cleaned_data.append(cleaned_row) # 将清洗后的数据写入新的CSV文件 with open('/Users/rachel_lrq/Desktop/cleaned_data.csv', 'w', newline='', encoding='utf-8') as file: csv_writer = csv.writer(file) # 写入清洗后的数据 csv_writer.writerows(cleaned_data) ``` 在这个例子中,我假设你的原始CSV文件路径是 `/Users/rachel_lrq/Desktop/浙江省海洋经济.csv`,清洗后的数据将会写入 `/Users/rachel_lrq/Desktop/cleaned_data.csv`。你可以根据自己的实际情况修改文件路径。
阅读全文

相关推荐

优化一下下面的代码def FileUploads_modelform(request): """ 批量上传文件 方法三:采用modelform上传,超级简单,只需要实例化表单的时候 接收一下表单里边字符串数据和文件,然后利用表单的save()方法保存一下数据即可 :param request: :return: """ # 判断提交方式GET 或POST if request.method == 'POST': File_ModelForm = FileUpload_ModelForm(request.POST, request.FILES) # 实例化FileUploadForm表单,注意获取数据的方式 if File_ModelForm.is_valid(): # file = File_ModelForm.cleaned_data['file'] # 对于文件,自动保存 # 字段+上传路径自动保存到数据库 # file_form = File_ModelForm.save() # 保存表单到数据库 # 多属性保存 Upload_File = File_ModelForm.save(commit=False) # Upload_File.file_url = Upload_File.file_url.temporary_file_path() # 文件路径 # 调用get_optimized_file_type函数获取优化文件类型 # optimized_file_type = get_optimized_file_type(Upload_File.file_url) Upload_File.file_name = Upload_File.file_url.name # 文件名 Upload_File.file_size = Upload_File.file_url.size # 文件大小 Upload_File.file_update_author = request.user.realname # 获取文件类型 # Get the file content type uploaded_file_type, encoding = mimetypes.guess_type(Upload_File.file_url.path) Upload_File.file_type = uploaded_file_type # Upload_File.file_type = Upload_File.file_url.content_type # optimized_file_type = get_optimized_file_type(file_url) Upload_File.save() # 其他操作,例如返回成功页面或其他处理 # return render(request, 'zadmin/pages/File_Uploads.html', {'file_form': file_form}) return HttpResponse("文件上传成功!") else: file_form = FileUpload_ModelForm() return render(request, 'zadmin/pages/File_Uploads.html', {'file_form': file_form})

import pandas as pd import numpy as np import os df = pd.read_csv('changed.txt',sep = '\t',escapechar = '\\') import nltk from nltk.corpus import stopwords # 读入德语停用词,用于去除一些无关文本情感的词,比如a、an等等 ger_stopwords = set(stopwords.words('german')) import re from bs4 import BeautifulSoup def clean_text(text): # 去除标签,获取实实在在的文本信息 text = BeautifulSoup(text,'html.parser').get_text() # 过滤标点符号 text = re.sub(r'[^a-zA-Z]',' ',text) # 将词汇转为小写,并过滤掉停用词 text = text.lower().split() text = [word for word in text if word not in ger_stopwords] return ' '.join(text) cleaned_text=df.review.apply(clean_text) sentence_list=[] for line in cleaned_text : # 将过滤好的每句话分割成一个个单词 sentence_list.append(line.split())修改这段代码的bugimport pandas as pd import numpy as np import os df = pd.read_csv('changed.txt',sep = '\t',escapechar = '\\') import nltk from nltk.corpus import stopwords # 读入德语停用词,用于去除一些无关文本情感的词,比如a、an等等 ger_stopwords = set(stopwords.words('german')) import re from bs4 import BeautifulSoup def clean_text(text): # 去除标签,获取实实在在的文本信息 text = BeautifulSoup(text,'html.parser').get_text() # 过滤标点符号 text = re.sub(r'[^a-zA-Z]',' ',text) # 将词汇转为小写,并过滤掉停用词 text = text.lower().split() text = [word for word in text if word not in ger_stopwords] return ' '.join(text) cleaned_text=df.review.apply(clean_text) sentence_list=[] for line in cleaned_text : # 将过滤好的每句话分割成一个个单词 sentence_list.append(line.split())

from __future__ import print_function from pandas import DataFrame,Series import pandas as pd datafile='/root/dataset/air_customer_Data/air_data.csv' data=pd.read_csv(datafile,encoding='utf-8') cleanedfile='cleaned.csv' data1=data[data['SUM_YR_1'].notnull() & data['SUM_YR_2'].notnull()] data1 index1=data['SUM_YR_1']!=0 index2=data['SUM_YR_2']!=0 index3=data['SEG_KM_SUM']>0 data1 = data1[(index1 | index2) & index3] data1.to_csv(cleanedfile) data2=data1[['LOAD_TIME','FFP_DATE','LAST_TO_END','FLIGHT_COUNT','SEG_KM_SUM','avg_discount']] data2.to_csv('datadecrese.csv') 3 import numpy as np data=pd.read_csv('datadecrese.csv') data['L']=pd.to_datetime(data['LOAD_TIME'])-pd.to_datetime(data['FFP_DATE']) data['L'] =data['L'].astype("str").str.split().str[0] # 去除数据中的days字符,只输出数字,再转化为数值型数据 data['L'] = data['L'].astype("int") / 30 data.drop(columns=['LOAD_TIME','FFP_DATE'], inplace=True) data.rename(columns = {'LAST_TO_END':'R','FLIGHT_COUNT':'F','SEG_KM_SUM':'M','avg_discount':'C'},inplace=True) data.drop(columns=['Unnamed: 0'], inplace=True) 4 data.describe() 5 P108 data=(data-data.mean())/data.std() 6 import pandas as pd from pandas import DataFrame,Series from sklearn.cluster import KMeans k=5 kmodel=KMeans(n_clusters=k,random_state=3) kmodel.fit(data) 7 import matplotlib import matplotlib.pyplot as plt clu=kmodel.cluster_centers_ x=[1,2,3,4,5] plt.rcParams['font.sans-serif'] = 'SimHei' plt.rcParams['axes.unicode_minus'] = False for i in range(5): plt.plot(x,clu[i]) plt.show

Traceback (most recent call last): File "D:\python_learning\x射线荧光光谱\1.py", line 8, in <module> df = pd.read_csv(r"C:\Users\XHL\Desktop\实验结果\X射线荧光光谱\XRF\最终清洗完毕数据结果.xlsx", encoding='gbk', index_col=0).reset_index(drop=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\python\Lib\site-packages\pandas\io\parsers\readers.py", line 912, in read_csv return _read(filepath_or_buffer, kwds) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\python\Lib\site-packages\pandas\io\parsers\readers.py", line 577, in _read parser = TextFileReader(filepath_or_buffer, **kwds) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\python\Lib\site-packages\pandas\io\parsers\readers.py", line 1407, in __init__ self._engine = self._make_engine(f, self.engine) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\python\Lib\site-packages\pandas\io\parsers\readers.py", line 1679, in _make_engine return mapping[engine](f, **self.options) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\python\Lib\site-packages\pandas\io\parsers\c_parser_wrapper.py", line 93, in __init__ self._reader = parsers.TextReader(src, **kwds) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pandas\_libs\parsers.pyx", line 548, in pandas._libs.parsers.TextReader.__cinit__ File "pandas\_libs\parsers.pyx", line 637, in pandas._libs.parsers.TextReader._get_header File "pandas\_libs\parsers.pyx", line 848, in pandas._libs.parsers.TextReader._tokenize_rows File "pandas\_libs\parsers.pyx", line 859, in pandas._libs.parsers.TextReader._check_tokenize_status File "pandas\_libs\parsers.pyx", line 2017, in pandas._libs.parsers.raise_parser_error UnicodeDecodeError: 'gbk' codec can't decode byte 0xa6 in position 17: illegal multibyte sequence

最新推荐

recommend-type

Python中对错误NameError: name ‘xxx’ is not defined进行总结

with open(file_name, 'wb') as fp: # 文件操作 ``` **情况五:模块导入错误** 当尝试使用未导入的模块时,也会出现`NameError`。确保在使用任何模块之前正确导入: ```python import urllib ``` 如果你的代码中有...
recommend-type

数据清洗之 csv文件读写

baby.to_csv('cleaned_baby_data.csv', index=False) ``` 在这个例子中,`index=False`表示不将DataFrame的索引写入CSV文件。 对于大型数据集,`read_csv`和`to_csv`可能需要较大的内存,这时可以考虑使用`chunk...
recommend-type

2023全球人工智能研究院观点报告:生成式人工智能对企业的影响和商业前景

内容概要:报告详细介绍了生成式人工智能对企业和消费者的影响及其商业前景。生成式人工智能通过生成与训练数据相似的新颖数据,提升了人工智能从‘赋能者’到‘协作者’的角色。报告讨论了生成式人工智能的技术基础,如Transformers,以及在消费者和企业中的应用案例。文中指出,生成式人工智能可以优化企业的工作流程,提高效率和创新能力,但同时强调了安全性、数据隐私和道德等问题。 适合人群:企业高管、技术领导者、数据科学家、产品经理等。 使用场景及目标:帮助企业理解和评估生成式人工智能的商业潜力,优化内部流程,提高效率和创新力,以及防范潜在的风险。 其他说明:生成式人工智能正处于快速发展的初期阶段,各行业都有广阔的应用前景,但需要注意监管和风险管理。
recommend-type

2024年第三季度深圳房地产市场回顾-CBRE.pdf

2024年第三季度深圳房地产市场回顾-CBRE
recommend-type

构建基于Django和Stripe的SaaS应用教程

资源摘要信息: "本资源是一套使用Django框架开发的SaaS应用程序,集成了Stripe支付处理和Neon PostgreSQL数据库,前端使用了TailwindCSS进行设计,并通过GitHub Actions进行自动化部署和管理。" 知识点概述: 1. Django框架: Django是一个高级的Python Web框架,它鼓励快速开发和干净、实用的设计。它是一个开源的项目,由经验丰富的开发者社区维护,遵循“不要重复自己”(DRY)的原则。Django自带了一个ORM(对象关系映射),可以让你使用Python编写数据库查询,而无需编写SQL代码。 2. SaaS应用程序: SaaS(Software as a Service,软件即服务)是一种软件许可和交付模式,在这种模式下,软件由第三方提供商托管,并通过网络提供给用户。用户无需将软件安装在本地电脑上,可以直接通过网络访问并使用这些软件服务。 3. Stripe支付处理: Stripe是一个全面的支付平台,允许企业和个人在线接收支付。它提供了一套全面的API,允许开发者集成支付处理功能。Stripe处理包括信用卡支付、ACH转账、Apple Pay和各种其他本地支付方式。 4. Neon PostgreSQL: Neon是一个云原生的PostgreSQL服务,它提供了数据库即服务(DBaaS)的解决方案。Neon使得部署和管理PostgreSQL数据库变得更加容易和灵活。它支持高可用性配置,并提供了自动故障转移和数据备份。 5. TailwindCSS: TailwindCSS是一个实用工具优先的CSS框架,它旨在帮助开发者快速构建可定制的用户界面。它不是一个传统意义上的设计框架,而是一套工具类,允许开发者组合和自定义界面组件而不限制设计。 6. GitHub Actions: GitHub Actions是GitHub推出的一项功能,用于自动化软件开发工作流程。开发者可以在代码仓库中设置工作流程,GitHub将根据代码仓库中的事件(如推送、拉取请求等)自动执行这些工作流程。这使得持续集成和持续部署(CI/CD)变得简单而高效。 7. PostgreSQL: PostgreSQL是一个对象关系数据库管理系统(ORDBMS),它使用SQL作为查询语言。它是开源软件,可以在多种操作系统上运行。PostgreSQL以支持复杂查询、外键、触发器、视图和事务完整性等特性而著称。 8. Git: Git是一个开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目。Git由Linus Torvalds创建,旨在快速高效地处理从小型到大型项目的所有内容。Git是Django项目管理的基石,用于代码版本控制和协作开发。 通过上述知识点的结合,我们可以构建出一个具备现代Web应用程序所需所有关键特性的SaaS应用程序。Django作为后端框架负责处理业务逻辑和数据库交互,而Neon PostgreSQL提供稳定且易于管理的数据库服务。Stripe集成允许处理多种支付方式,使用户能够安全地进行交易。前端使用TailwindCSS进行快速设计,同时GitHub Actions帮助自动化部署流程,确保每次代码更新都能够顺利且快速地部署到生产环境。整体来看,这套资源涵盖了从前端到后端,再到部署和支付处理的完整链条,是构建现代SaaS应用的一套完整解决方案。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据处理与GoogleVIS集成:一步步教你绘图

![R语言数据处理与GoogleVIS集成:一步步教你绘图](https://media.geeksforgeeks.org/wp-content/uploads/20200415005945/var2.png) # 1. R语言数据处理基础 在数据分析领域,R语言凭借其强大的统计分析能力和灵活的数据处理功能成为了数据科学家的首选工具。本章将探讨R语言的基本数据处理流程,为后续章节中利用R语言与GoogleVIS集成进行复杂的数据可视化打下坚实的基础。 ## 1.1 R语言概述 R语言是一种开源的编程语言,主要用于统计计算和图形表示。它以数据挖掘和分析为核心,拥有庞大的社区支持和丰富的第
recommend-type

如何使用Matlab实现PSO优化SVM进行多输出回归预测?请提供基本流程和关键步骤。

在研究机器学习和数据预测领域时,掌握如何利用Matlab实现PSO优化SVM算法进行多输出回归预测,是一个非常实用的技能。为了帮助你更好地掌握这一过程,我们推荐资源《PSO-SVM多输出回归预测与Matlab代码实现》。通过学习此资源,你可以了解到如何使用粒子群算法(PSO)来优化支持向量机(SVM)的参数,以便进行多输入多输出的回归预测。 参考资源链接:[PSO-SVM多输出回归预测与Matlab代码实现](https://wenku.csdn.net/doc/3i8iv7nbuw?spm=1055.2569.3001.10343) 首先,你需要安装Matlab环境,并熟悉其基本操作。接
recommend-type

Symfony2框架打造的RESTful问答系统icare-server

资源摘要信息:"icare-server是一个基于Symfony2框架开发的RESTful问答系统。Symfony2是一个使用PHP语言编写的开源框架,遵循MVC(模型-视图-控制器)设计模式。本项目完成于2014年11月18日,标志着其开发周期的结束以及初步的稳定性和可用性。" Symfony2框架是一个成熟的PHP开发平台,它遵循最佳实践,提供了一套完整的工具和组件,用于构建可靠的、可维护的、可扩展的Web应用程序。Symfony2因其灵活性和可扩展性,成为了开发大型应用程序的首选框架之一。 RESTful API( Representational State Transfer的缩写,即表现层状态转换)是一种软件架构风格,用于构建网络应用程序。这种风格的API适用于资源的表示,符合HTTP协议的方法(GET, POST, PUT, DELETE等),并且能够被多种客户端所使用,包括Web浏览器、移动设备以及桌面应用程序。 在本项目中,icare-server作为一个问答系统,它可能具备以下功能: 1. 用户认证和授权:系统可能支持通过OAuth、JWT(JSON Web Tokens)或其他安全机制来进行用户登录和权限验证。 2. 问题的提交与管理:用户可以提交问题,其他用户或者系统管理员可以对问题进行管理,比如标记、编辑、删除等。 3. 回答的提交与管理:用户可以对问题进行回答,回答可以被其他用户投票、评论或者标记为最佳答案。 4. 分类和搜索:问题和答案可能按类别进行组织,并提供搜索功能,以便用户可以快速找到他们感兴趣的问题。 5. RESTful API接口:系统提供RESTful API,便于开发者可以通过标准的HTTP请求与问答系统进行交互,实现数据的读取、创建、更新和删除操作。 Symfony2框架对于RESTful API的开发提供了许多内置支持,例如: - 路由(Routing):Symfony2的路由系统允许开发者定义URL模式,并将它们映射到控制器操作上。 - 请求/响应对象:处理HTTP请求和响应流,为开发RESTful服务提供标准的方法。 - 验证组件:可以用来验证传入请求的数据,并确保数据的完整性和正确性。 - 单元测试:Symfony2鼓励使用PHPUnit进行单元测试,确保RESTful服务的稳定性和可靠性。 对于使用PHP语言的开发者来说,icare-server项目的完成和开源意味着他们可以利用Symfony2框架的优势,快速构建一个功能完备的问答系统。通过学习icare-server项目的代码和文档,开发者可以更好地掌握如何构建RESTful API,并进一步提升自身在Web开发领域的专业技能。同时,该项目作为一个开源项目,其代码结构、设计模式和实现细节等都可以作为学习和实践的最佳范例。 由于icare-server项目完成于2014年,使用的技术栈可能不是最新的,因此在考虑实际应用时,开发者可能需要根据当前的技术趋势和安全要求进行相应的升级和优化。例如,PHP的版本更新可能带来新的语言特性和改进的安全措施,而Symfony2框架本身也在不断地发布新版本和更新补丁,因此维护一个长期稳定的问答系统需要开发者对技术保持持续的关注和学习。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依