lstm股票预测python
时间: 2023-09-08 11:07:16 浏览: 111
lstm预测-python
LSTM (Long Short-Term Memory) 是一种递归神经网络 (RNN) 的变体,常用于处理序列数据的预测任务,包括股票价格预测。在Python中,可以使用各种深度学习框架(如TensorFlow、Keras、PyTorch等)来实现LSTM模型进行股票预测。
下面是一个使用Keras和TensorFlow实现LSTM模型进行股票预测的简单示例:
```python
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
# 读取股票数据
data = pd.read_csv('stock_data.csv')
# 提取收盘价数据并进行归一化处理
close_prices = data['Close'].values.reshape(-1, 1)
scaler = MinMaxScaler()
normalized_prices = scaler.fit_transform(close_prices)
# 划分训练集和测试集
train_size = int(len(normalized_prices) * 0.8)
train_data, test_data = normalized_prices[:train_size], normalized_prices[train_size:]
# 准备训练数据
def create_dataset(data, lookback):
X, y = [], []
for i in range(len(data) - lookback - 1):
X.append(data[i:(i + lookback), 0])
y.append(data[i + lookback, 0])
return np.array(X), np.array(y)
lookback = 10
X_train, y_train = create_dataset(train_data, lookback)
X_test, y_test = create_dataset(test_data, lookback)
# 调整输入数据的形状
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(lookback, 1)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=1)
# 在测试集上进行预测
predictions = model.predict(X_test)
predictions = scaler.inverse_transform(predictions)
# 可视化预测结果
import matplotlib.pyplot as plt
plt.plot(scaler.inverse_transform(test_data[lookback+1:]), label='Actual')
plt.plot(predictions, label='Predicted')
plt.legend()
plt.show()
```
上述代码假设你已经将股票数据保存在`stock_data.csv`文件中,并且该文件包含一个名为"Close"的列,表示每天的收盘价。你可以根据自己的数据调整代码中的相关参数,并进行适当的修改。这只是一个简单的示例,实际的股票预测可能需要更复杂的模型和特征工程方法。
阅读全文