self.Feature = nn.Sequential(*list(resnet.children())[:8]) Convention(1024, 512, 3, 1, 1),Convention(512, 256, 3, 1, 1),)如何在其中加入vgg16
时间: 2023-10-06 22:13:17 浏览: 80
你可以使用以下代码将VGG16模型的卷积层添加到ResNet模型的特征提取部分中:
```
import torch.nn as nn
import torchvision.models as models
class ResNetVGG16(nn.Module):
def __init__(self):
super(ResNetVGG16, self).__init__()
resnet = models.resnet18(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
# Add VGG16 convolutional layers to ResNet feature extractor
self.Feature = nn.Sequential(*list(resnet.children())[:8] + list(vgg16.features.children())[0:17])
# Add ResNet fully connected layers to the model
self.fc = nn.Sequential(nn.Linear(4096, 1024),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(1024, 10))
def forward(self, x):
x = self.Feature(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
这里我们使用了PyTorch中的`nn.Sequential`模块将ResNet和VGG16的卷积层按照顺序连接起来。我们将ResNet的前8层卷积层与VGG16的前17层卷积层连接起来,形成一个新的特征提取器。然后我们将ResNet的全连接层添加到模型中以进行分类。最后,我们在`forward`函数中将输入的数据通过特征提取器和分类器进行前向传播。
阅读全文