print("x_train shape:{}".format(x_train.shape)) print("x_test shape:{}".format(x_test.shape))这个呢
时间: 2024-06-07 21:11:26 浏览: 108
这两行代码输出了训练集和测试集的形状信息。在这里,x_train.shape和x_test.shape都是元组(tuple)类型的数据,分别包含了样本数(行数)和特征数(列数)两个信息。例如,如果输出结果为x_train shape:(100, 4),则表示训练集共有100个样本,每个样本有4个特征。同理,如果输出结果为x_test shape:(50, 4),则表示测试集共有50个样本,每个样本有4个特征。这些信息有助于我们了解数据集的规模和特征。
相关问题
下面的代码哪里有问题,帮我改一下from __future__ import print_function import numpy as np import tensorflow import keras from keras.models import Sequential from keras.layers import Dense,Dropout,Flatten from keras.layers import Conv2D,MaxPooling2D from keras import backend as K import tensorflow as tf import datetime import os np.random.seed(0) from sklearn.model_selection import train_test_split from PIL import Image import matplotlib.pyplot as plt from keras.datasets import mnist images = [] labels = [] (x_train,y_train),(x_test,y_test)=mnist.load_data() X = np.array(images) print (X.shape) y = np.array(list(map(int, labels))) print (y.shape) x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) print (x_train.shape) print (x_test.shape) print (y_train.shape) print (y_test.shape) ############################ ########## batch_size = 20 num_classes = 4 learning_rate = 0.0001 epochs = 10 img_rows,img_cols = 32 , 32 if K.image_data_format() =='channels_first': x_train =x_train.reshape(x_train.shape[0],1,img_rows,img_cols) x_test = x_test.reshape(x_test.shape[0],1,img_rows,img_cols) input_shape = (1,img_rows,img_cols) else: x_train = x_train.reshape(x_train.shape[0],img_rows,img_cols,1) x_test = x_test.reshape(x_test.shape[0],img_rows,img_cols,1) input_shape =(img_rows,img_cols,1) x_train =x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:',x_train.shape) print(x_train.shape[0],'train samples') print(x_test.shape[0],'test samples')
代码中存在以下问题:
1. 变量 images 和 labels 没有被赋值,而后面却使用了它们来构造 X 和 y,导致 X 和 y 的值都为空。
2. 导入的 mnist 数据集没有被使用,而是使用了未定义的 images 和 labels,需要将其替换为 mnist 数据集。
3. input_shape 的值应该是三元组 (img_rows, img_cols, 1),而代码中缺少了最后一个 1。
4. 在 if K.image_data_format() =='channels_first': 分支中,x_train 和 x_test 被改变了形状,但 y_train 和 y_test 却没有被改变,需要将其同步修改。
下面是修改后的代码:
```
from __future__ import print_function
import numpy as np
import tensorflow
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
import tensorflow as tf
import datetime
import os
np.random.seed(0)
from sklearn.model_selection import train_test_split
from PIL import Image
import matplotlib.pyplot as plt
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
print(x_train.shape)
print(y_train.shape)
############################
##########
batch_size = 20
num_classes = 10
learning_rate = 0.0001
epochs = 10
img_rows, img_cols = 32, 32
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (img_rows, img_cols, 1)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
print('input_shape:', input_shape)
```
from sklearn.datasets import ? from sklearn.model selection import train_test_split from sklearn.neural network import MLPClassifier import numpy as np digits = load_digits() X=digits.data y=digits.target X train X test,y_train,y_test = ? (X,y,random_state=0) mip = ? (solver ='lbfgs',hidden_layer_sizes=[100,100],activation='relu',random_state=62) mlp.fit(X_train,y_train) print(X_train.shape,y_train.shape,X_test.shape,y_test.shape) print("训练得分: {:.2f}".format(mlp.score(X_train.y_train))) print("测试得分: {:.2f}".format(mlp.score(X_test y_test)))
这段代码存在一些问题,可能会导致运行错误,我来帮你修改一下:
```
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
import numpy as np
digits = load_digits()
X = digits.data
y = digits.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
mlp = MLPClassifier(solver ='lbfgs', hidden_layer_sizes=[100,100], activation='relu', random_state=62)
mlp.fit(X_train, y_train)
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)
print("训练得分: {:.2f}".format(mlp.score(X_train, y_train)))
print("测试得分: {:.2f}".format(mlp.score(X_test, y_test)))
```
修改了以下几个地方:
1. `load_digits` 的拼写错误
2. `train_test_split` 的调用方式错误,应该为 `train_test_split(X, y, random_state=0)`
3. `MLPClassifier` 的调用方式错误,应该为 `MLPClassifier(solver='lbfgs', hidden_layer_sizes=[100,100], activation='relu', random_state=62)`
4. 打印得分时,应该为 `mlp.score(X_train, y_train)` 和 `mlp.score(X_test, y_test)`
阅读全文
相关推荐
















