for epoch in range(10): running_loss = 0.0 for i, data in tqdm(enumerate(fashion_trainloader), total=len(fashion_trainloader)): inputs, labels = data optimizer.zero_grad() outputs = pretrained_model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print('Epoch %d, loss: %.3f' % (epoch + 1, running_loss / len(fashion_trainloader)))

时间: 2024-03-14 10:48:51 浏览: 21
这段代码是一个简单的 PyTorch 训练循环,用于训练一个预训练的模型,其中: - 首先,外层的 for 循环会遍历训练数据集中的所有数据,这里的训练数据集是 fashion_trainloader。 - 然后,在内层的 for 循环中,我们使用 optimizer.zero_grad() 来清空梯度,然后将输入数据 inputs 喂给预训练的模型 pretrained_model,得到输出 outputs。 - 接着,我们计算输出和标签之间的损失,使用 criterion(outputs, labels) 函数来实现。然后,我们调用 loss.backward() 来计算梯度,这里的梯度是针对模型的所有参数的。 - 最后,我们使用 optimizer.step() 来更新模型的参数,以便最小化损失。 在每个 epoch 结束时,我们会打印出当前 epoch 的平均损失。这个训练循环的目的是训练一个预训练的模型,以便我们可以在后续的任务中使用该模型来进行预测。
相关问题

for epoch in range(8): # train net.train() running_loss = 0.0

这段代码用于训练模型,训练过程中将会遍历所有的训练数据,每遍历一次称为一个epoch。 首先,我们使用for循环遍历8个epoch,即对训练数据进行8次完整的遍历。在每个epoch中,我们需要将模型设置为训练模式,即net.train(),以便启用训练时特有的模块,如Dropout、BatchNorm等。 接着,我们将running_loss初始化为0.0,用于累计当前epoch中所有mini-batch的损失函数值之和。在每个mini-batch中,我们将输入数据和标签数据传入模型,计算模型输出和损失函数值,然后通过反向传播更新模型参数。 在训练过程中,我们可以计算每个mini-batch的损失函数值,并累加到running_loss中,以便后续计算平均损失。

for epoch in range(10): running_loss = 0.0 for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / len(train_loader)))分开写

好的,下面是将上述代码拆分成更详细的步骤: ```python # 定义训练循环 for epoch in range(10): running_loss = 0.0 # 循环遍历训练数据集 for i, (inputs, labels) in enumerate(train_loader): # 梯度清零 optimizer.zero_grad() # 前向传播 outputs = model(inputs) # 计算损失 loss = criterion(outputs, labels) # 反向传播 loss.backward() # 更新参数 optimizer.step() # 累计损失 running_loss += loss.item() # 计算平均损失并输出 average_loss = running_loss / len(train_loader) print('Epoch %d loss: %.3f' % (epoch + 1, average_loss)) ``` 在这个代码中,我们首先定义了一个训练循环,它将循环遍历训练数据集,每个 epoch 迭代一次。在每个 epoch 中,我们使用 `enumerate()` 函数迭代遍历 `train_loader` 中的数据,其中 `inputs` 表示输入数据,`labels` 表示标签数据。 接下来,我们使用优化器 `optimizer` 的 `zero_grad()` 方法将梯度清零,以防止梯度累积。然后,我们使用模型 `model` 执行前向传播,并计算损失 `loss`。然后,我们使用 `backward()` 方法执行反向传播,计算梯度。最后,我们使用 `step()` 方法更新参数,以最小化损失。 在完成所有数据的训练之后,我们计算平均损失并输出。在这个例子中,我们使用了 `%` 运算符来格式化输出字符串,其中 `%d` 表示整数,`%.3f` 表示保留三位小数的浮点数。 希望这个示例能够帮助您更好地理解代码的执行过程。

相关推荐

检查一下:import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset from sklearn.metrics import roc_auc_score # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) x = self.sigmoid(x) return x # 加载数据集 data = torch.load('data.pt') x_train, y_train, x_test, y_test = data train_dataset = TensorDataset(x_train, y_train) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) test_dataset = TensorDataset(x_test, y_test) test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False) # 定义损失函数和优化器 criterion = nn.BCELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # 训练模型 net = Net() for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() # 在测试集上计算AUC y_pred = [] y_true = [] with torch.no_grad(): for data in test_loader: inputs, labels = data outputs = net(inputs) y_pred += outputs.tolist() y_true += labels.tolist() auc = roc_auc_score(y_true, y_pred) print('Epoch %d, loss: %.3f, test AUC: %.3f' % (epoch + 1, running_loss / len(train_loader), auc))

详细分析一下python代码:import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.01, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=True, min_lr=0) loss_hist, acc_hist = [], [] loss_hist_val, acc_hist_val = [], [] for epoch in range(140): running_loss = 0.0 correct = 0 for data in train_loader: batch, labels = data batch, labels = batch.to(device), labels.to(device) optimizer.zero_grad() outputs = net(batch) loss = criterion(outputs, labels) loss.backward() optimizer.step() # compute training statistics _, predicted = torch.max(outputs, 1) correct += (predicted == labels).sum().item() running_loss += loss.item() avg_loss = running_loss / len(train_set) avg_acc = correct / len(train_set) loss_hist.append(avg_loss) acc_hist.append(avg_acc) # validation statistics net.eval() with torch.no_grad(): loss_val = 0.0 correct_val = 0 for data in val_loader: batch, labels = data batch, labels = batch.to(device), labels.to(device) outputs = net(batch) loss = criterion(outputs, labels) _, predicted = torch.max(outputs, 1) correct_val += (predicted == labels).sum().item() loss_val += loss.item() avg_loss_val = loss_val / len(val_set) avg_acc_val = correct_val / len(val_set) loss_hist_val.append(avg_loss_val) acc_hist_val.append(avg_acc_val) net.train() scheduler.step(avg_loss_val) print('[epoch %d] loss: %.5f accuracy: %.4f val loss: %.5f val accuracy: %.4f' % (epoch + 1, avg_loss, avg_acc, avg_loss_val, avg_acc_val))

最新推荐

recommend-type

软考-考生常见操作说明-202405101400-纯图版.pdf

软考官网--2024常见操作说明:包括如何绘制网络图、UML图、表格等 模拟作答系统是计算机技术与软件专业技术资格(水平)考试的电子化考试系统界面、作答过程的仿真系统,为各级别、各资格涉及输入和页面显示的部分题型提供体验性练习。
recommend-type

setuptools-34.0.3.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.