for epoch in range(10): running_loss = 0.0 for i, data in tqdm(enumerate(fashion_trainloader), total=len(fashion_trainloader)): inputs, labels = data optimizer.zero_grad() outputs = pretrained_model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print('Epoch %d, loss: %.3f' % (epoch + 1, running_loss / len(fashion_trainloader)))
时间: 2024-03-14 09:48:51 浏览: 163
keras中epoch,batch,loss,val_loss用法说明
这段代码是一个简单的 PyTorch 训练循环,用于训练一个预训练的模型,其中:
- 首先,外层的 for 循环会遍历训练数据集中的所有数据,这里的训练数据集是 fashion_trainloader。
- 然后,在内层的 for 循环中,我们使用 optimizer.zero_grad() 来清空梯度,然后将输入数据 inputs 喂给预训练的模型 pretrained_model,得到输出 outputs。
- 接着,我们计算输出和标签之间的损失,使用 criterion(outputs, labels) 函数来实现。然后,我们调用 loss.backward() 来计算梯度,这里的梯度是针对模型的所有参数的。
- 最后,我们使用 optimizer.step() 来更新模型的参数,以便最小化损失。
在每个 epoch 结束时,我们会打印出当前 epoch 的平均损失。这个训练循环的目的是训练一个预训练的模型,以便我们可以在后续的任务中使用该模型来进行预测。
阅读全文