使用PyTorch实现LeNet网络。   使用实验7的 Fashion MNIST 对LeNet进行训练和测试。优化算法采用SGD或Adam。    torch.optim.SGD 或 torch.optim.Adam。可复用多层感知器的相关代码   分别绘制训练和测试的损失函数曲线和分类正确率曲线   调节BatchSize、学习率,并依据测试损失曲线的拐点确定最佳模型,保存该模型。   使用测试集测试所保存模型的性能,以混淆矩阵展示。   扩展任务:以旋转的方式扩充测试集,在前述最佳模型上测试扩充后

时间: 2023-06-17 16:05:29 浏览: 50
以下是使用PyTorch实现LeNet网络的代码: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.pool2 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) testset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") net = LeNet().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9) for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 200 == 199: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = 0.0 print('Finished Training') correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data[0].to(device), data[1].to(device) outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ``` 在训练过程中,可以使用 `torch.optim.Adam` 来代替 `torch.optim.SGD`,并且可以调整 `batch_size` 和 `learning_rate` 来寻找最佳模型。 以下是绘制训练和测试的损失函数曲线和分类正确率曲线的代码: ```python import matplotlib.pyplot as plt train_losses = [] test_losses = [] train_accs = [] test_accs = [] for epoch in range(10): train_loss = 0.0 train_acc = 0 test_loss = 0.0 test_acc = 0 for i, data in enumerate(trainloader, 0): inputs, labels = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = torch.max(outputs.data, 1) train_acc += (predicted == labels).sum().item() train_loss /= len(trainloader.dataset) train_acc /= len(trainloader.dataset) train_losses.append(train_loss) train_accs.append(train_acc) with torch.no_grad(): for data in testloader: images, labels = data[0].to(device), data[1].to(device) outputs = net(images) loss = criterion(outputs, labels) test_loss += loss.item() _, predicted = torch.max(outputs.data, 1) test_acc += (predicted == labels).sum().item() test_loss /= len(testloader.dataset) test_acc /= len(testloader.dataset) test_losses.append(test_loss) test_accs.append(test_acc) print('[%d] train loss: %.3f, test loss: %.3f, train acc: %.3f, test acc: %.3f' % ( epoch + 1, train_loss, test_loss, train_acc, test_acc)) plt.subplot(2, 1, 1) plt.plot(train_losses, label='train') plt.plot(test_losses, label='test') plt.legend() plt.ylabel('loss') plt.subplot(2, 1, 2) plt.plot(train_accs, label='train') plt.plot(test_accs, label='test') plt.legend() plt.ylabel('accuracy') plt.show() ``` 可以使用以上代码绘制训练和测试的损失函数曲线和分类正确率曲线。 最后,可以使用以下代码保存最佳模型并测试其性能: ```python torch.save(net.state_dict(), 'best_model.pth') confusion_matrix = torch.zeros(10, 10) with torch.no_grad(): for data in testloader: images, labels = data[0].to(device), data[1].to(device) outputs = net(images) _, predicted = torch.max(outputs, 1) for i in range(len(labels)): confusion_matrix[labels[i]][predicted[i]] += 1 print(confusion_matrix) ``` 以上代码会将最佳模型保存到 `best_model.pth` 文件中,并使用混淆矩阵展示测试集的性能。可以使用旋转的方式扩充测试集,并在最佳模型上测试扩充后的性能。

相关推荐

zip
基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。

最新推荐

recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

今天小编就为大家分享一篇Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

用Pytorch训练CNN(数据集MNIST,使用GPU的方法)

今天小编就为大家分享一篇用Pytorch训练CNN(数据集MNIST,使用GPU的方法),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

pytorch实现对输入超过三通道的数据进行训练

今天小编就为大家分享一篇pytorch实现对输入超过三通道的数据进行训练,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

使用pytorch实现论文中的unet网络

设计神经网络的一般步骤: 1. 设计框架 2. 设计骨干网络 Unet网络设计的步骤: 1. 设计Unet网络工厂模式 2. 设计编解码结构 3. 设计卷积模块 4. unet实例模块 Unet网络最重要的特征: 1. 编解码结构。 2. 解码结构,...
recommend-type

pytorch实现mnist分类的示例讲解

今天小编就为大家分享一篇pytorch实现mnist分类的示例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。