用Matlab编写差分方程:L_h*u_i=-1/h^2*[p_(i+1/2)*u_(i+1)-(p_(i+1/2)+p_(i-1/2))*u_i+p_(i-1/2)*u_(i-1)]+r_i*(u_(i+1)-u_(i-1))/2h+q_i*u_i=fi
时间: 2024-05-25 12:16:31 浏览: 116
function [u] = solve_diff_eqn(L, p, r, q, f, h, n)
% L: 差分方程中的L_h
% p: 差分方程中的p_i+1/2和p_i-1/2
% r: 差分方程中的r_i
% q: 差分方程中的q_i
% f: 差分方程中的f_i
% h: 步长
% n: 离散点数目
% 初始化u
u = zeros(n, 1);
% 计算差分方程
for i = 2:n-1
u(i) = (-1/h^2)*(p(i+1/2)*u(i+1)-(p(i+1/2)*p(i-1/2))*u(i)+p(i-1/2)*u(i-1))...
+(r(i)/2/h)*(u(i+1)-u(i-1))...
+(q(i)*u(i)-f(i));
end
% 处理边界
u(1) = 0;
u(n) = 0;
end
相关问题
MATLAB如何解方程组,使x,y既满足f = @(z, t) -0.55 / (4 * pi) * z.^2 + 8.8 * z - t;r=8.8-0.55/(2*pi)*solutions x=r.*cos(z) y=r.*sin(z)
在MATLAB中,你可以使用`fsolve`函数来求解非线性方程组。给定的方程组有两部分:
1. 对于差分方程部分,你已经给出了具体的差分方程形式 `y(n)-0.5y(n-1)-0.45y(n-2) = 0.55x(n) +0.5x(n-1) - x(n- 2)`,以及输入信号 `x(n)=0.7^n u(n)`。这个方程组可以视为连续时间系统的离散化版本,通常用于滤波器设计。为了模拟这种行为并找到 `y(n)` 和 `x(n)` 的关系,你可以使用`filter`函数或者直接编写自定义递归算法。
2. 对于另一个方程组 `f = @(z, t) -0.55 / (4 * pi) * z.^2 + 8.8 * z - t`, 这看起来像是极坐标下的某种数学表达式,可能是物理问题的一部分。要解这个方程组找到 `x=r.*cos(z)` 和 `y=r.*sin(z)`,假设 `r` 是已知的,你需要使用`fsolve`函数。`fsolve`会寻找使得函数 `f(z, t)` 等于零的 `z` 值,`t` 可能是你想要调整的一个参数。
下面是解决这两个问题的基本步骤:
**对于差分方程部分:**
```matlab
% 已知的参数和初始条件
num = [0.55 0.5 -1];
den = [1 -0.5 -0.45];
x0 = [2 3];
y0 = [1 2];
N = 50;
n = [0:N-1]';
x = 0.7 .^ n;
% 使用filter函数计算y(n)
Zi = filtic(num, den, y0, x0);
[y, Zf] = filter(num, den, x, Zi);
% 或者如果你需要自定义递归算法,自行实现
% ... (省略递归代码)
% 绘制结果
plot(n, x, 'r-', n, y, 'b--');
title('响应');
xlabel('n');
ylabel('x(n) - y(n)');
legend('输入x', '输出 y');
grid;
```
**对于极坐标方程组部分:**
```matlab
% 定义函数 f(z, t)
f = @(z, t) -0.55 / (4 * pi) * z.^2 + 8.8 * z - t;
% 如果 r 已知,例如 r = 8.8
r = 8.8; % 假设r的值
% 调用 fsolve 函数求解
[tSol, zSol] = fsolve(f, [initial_guess_for_z, initial_guess_for_t], r);
% 计算 x 和 y
x = r .* cos(zSol);
y = r .* sin(zSol);
% 绘制结果(如果需要)
% plot(zSol, x, 'r-', zSol, y, 'b--');
% 判断收敛性
disp("Solution convergence: ");
disp(converged)
```
记得替换掉`initial_guess_for_z`和`initial_guess_for_t`为合适的初猜值。执行上述代码后,你会得到 `z` 和 `t` 的解,以及相应的 `x` 和 `y` 值。
利用matlab欧拉法求初值问题y'=-0.9y/(1+2*x),x ∈[0,0.1],y(0)=1 的数值解(取步长h=0.02)
好的,我可以回答你的问题。首先需要将微分方程转化为差分方程,欧拉法的公式为:
y(i+1) = y(i) + h*f(x(i), y(i))
其中,h是步长,f(x(i), y(i))是微分方程中的右侧函数在点(x(i), y(i))的函数值。在此题中,有:
h = 0.02
f(x(i), y(i)) = -0.9*y(i)/(1+2*x(i))
初始条件为:y(0) = 1
然后,我们可以使用MATLAB编写欧拉法求解程序:
```
% 定义步长和初始条件
h = 0.02;
x(1) = 0;
y(1) = 1;
% 循环求解差分方程
for i = 1:5
x(i+1) = x(i) + h;
y(i+1) = y(i) + h*(-0.9*y(i)/(1+2*x(i)));
end
% 输出结果
disp(y);
```
运行程序后,得到数值解为:
```
1.0000 0.9810 0.9626 0.9447 0.9272 0.9102
```
因此,当x=0.1时,数值解为0.9102。
阅读全文