如何对测试集中的数据求Acc、Precision、Recall、PR曲线、F1值、TRR值、FRR值、AUC值、ROC曲线,给出具体代码
时间: 2023-07-10 18:29:49 浏览: 134
以下是一个Python代码示例,用于对测试集中的数据求Acc、Precision、Recall、PR曲线、F1值、TRR值、FRR值、AUC值、ROC曲线:
```python
from sklearn.metrics import accuracy_score, precision_score, recall_score
from sklearn.metrics import f1_score, roc_auc_score, roc_curve, precision_recall_curve
import matplotlib.pyplot as plt
# 预测结果和真实标签
y_pred = [0, 0, 1, 1, 0, 1, 0, 0, 1, 1]
y_true = [0, 1, 1, 1, 0, 1, 0, 1, 0, 1]
# 计算Acc、Precision、Recall、F1值、TRR值、FRR值
acc = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
trr = recall
frr = 1 - specificity
# 计算PR曲线和F1值
precision, recall, thresholds = precision_recall_curve(y_true, y_pred)
f1_scores = 2 * precision * recall / (precision + recall)
# 绘制PR曲线和F1值
plt.plot(recall, precision, label='PR curve')
plt.plot(recall, f1_scores[:-1], label='F1 score')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.legend(loc="lower left")
plt.show()
# 计算AUC值和ROC曲线
auc = roc_auc_score(y_true, y_pred)
fpr, tpr, thresholds = roc_curve(y_true, y_pred)
# 绘制ROC曲线
plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % auc)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc="lower right")
plt.show()
```
其中,y_pred和y_true分别为预测结果和真实标签,可以根据自己的数据进行相应修改。通过sklearn.metrics库中的函数,可以方便地计算出Acc、Precision、Recall、F1值、TRR值、FRR值、AUC值、ROC曲线和PR曲线。绘制PR曲线和ROC曲线可以使用matplotlib库。
阅读全文