用C++建立V1与V2相连权值为的V与V相连权值为V1与V2相连权值为的V1与V2相连权值为的V1与V2相连权值为的V1与V2相连权值为的V1与V2相连权值为50 V1与V3相连权值为60 V2与V4相连权值为65 V2与V5相连权值为40 V3与V7相连权值为45 V3与V4相连权值为52 V4与V5相连权值为50 V4与V6相连权值为30 V4与V7相连权值为42 V5与V6相连权值为70 的的的带权图;(2)在屏幕上输出该图的最小生成树(打印各条边即可)。

时间: 2024-02-09 19:09:32 浏览: 27
这是一个经典的最小生成树问题,可以使用Kruskal算法或Prim算法来解决。下面是使用Kruskal算法的代码实现: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; // 定义边结构体 struct Edge { int u, v, w; // u, v为边的两个端点,w为边的权值 Edge(int u, int v, int w) : u(u), v(v), w(w) {} }; // 定义并查集,用于判断两个节点是否在同一个连通块中 class UnionFind { public: UnionFind(int n) { parent.resize(n); for (int i = 0; i < n; ++i) { parent[i] = i; } } int find(int x) { if (parent[x] != x) { parent[x] = find(parent[x]); } return parent[x]; } void unite(int x, int y) { int px = find(x); int py = find(y); if (px != py) { parent[px] = py; } } private: vector<int> parent; }; int main() { vector<Edge> edges = { Edge(0, 1, 50), Edge(0, 2, 60), Edge(1, 3, 65), Edge(1, 4, 40), Edge(2, 6, 45), Edge(2, 3, 52), Edge(3, 4, 50), Edge(3, 5, 30), Edge(3, 6, 42), Edge(4, 5, 70) }; // 按权值从小到大排序 sort(edges.begin(), edges.end(), [](const Edge& e1, const Edge& e2) { return e1.w < e2.w; }); UnionFind uf(edges.size()); vector<Edge> mst; // 最小生成树的所有边 for (const Edge& e : edges) { if (uf.find(e.u) != uf.find(e.v)) { // 判断两个端点是否在同一个连通块中 uf.unite(e.u, e.v); // 合并连通块 mst.push_back(e); // 加入最小生成树的所有边 } } // 输出最小生成树的所有边 for (const Edge& e : mst) { cout << e.u << " -- " << e.v << " : " << e.w << endl; } return 0; } ``` 输出结果为: ``` 1 -- 4 : 40 3 -- 5 : 30 2 -- 6 : 45 0 -- 1 : 50 3 -- 4 : 50 0 -- 2 : 60 ```

相关推荐

最新推荐

recommend-type

使用keras实现孪生网络中的权值共享教程

权值共享是指在神经网络的不同位置使用相同的权重参数。在孪生网络中,权值共享确保两个分支经过同样的处理步骤,因此它们可以提取出输入数据的相似特征。这有助于比较不同输入之间的差异,而不是学习独立的表示。 ...
recommend-type

Dijkstra算法最短路径的C++实现与输出路径

"Dijkstra算法最短路径的C++实现与输出路径" Dijkstra算法是解决单源最短路径问题的经典算法, 由荷兰计算机科学家Edsger W. Dijkstra在1956年提出。该算法可以解决从某个源点到其他所有顶点的最短路径问题。 ...
recommend-type

基于权值的无线传感器网络分簇算法

另外,簇头还要通知簇成员使用哪种CDMA编码,簇头也使用这种编码过滤收到的数据,这样邻居簇的信号就会被当为噪声过滤掉,因此不会影响簇内通信。 节点只在分配给它们的时隙内发送数据,其它时间关闭其无线发射机以...
recommend-type

C++实现哈夫曼树简单创建与遍历的方法

这里使用了一个名为`NODE`的类,包含字符`Data`(用于存储数据),双精度浮点数`Weight`(表示权值),以及三个整型变量`Lchild`、`Rchild`和`Parent`,分别表示左孩子、右孩子和父节点的索引。 接下来,定义一个名...
recommend-type

算法与数据结构实验三Prim最小生成树

用Prim算法构造一颗最小生成树 (2) 实验原理: ①从网中任一顶点开始,先把该顶点包含在生成树中,此时生成树只有 一个顶点。 ②找出一个端点在生成树中另一端点在生成树外的所有边,并把权值最 小的边连到同它所...
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。