const char *ext_clk_name = clk_get(ext_clk);

时间: 2024-05-21 08:16:50 浏览: 33
这是一个使用了Linux内核函数的代码行,其中 `ext_clk` 是一个指向外部时钟源的结构体指针,`clk_get` 是一个函数,它会返回指向该时钟源的指针。`ext_clk_name` 是一个指向字符数组的指针,它将会保存指向该时钟源的名称的指针。由于 `ext_clk_name` 是一个指针,所以在使用之前需要先为它分配内存空间。
相关问题

devm_clk_get函数

devm_clk_get函数是Linux内核提供的一个函数,用于获取设备的时钟资源。这个函数的原型定义如下: ```c struct clk *devm_clk_get(struct device *dev, const char *id); ``` 参数说明: - `dev`:指向设备对象的指针,表示要获取时钟资源的设备。 - `id`:时钟资源的标识符,可以是时钟名称或者时钟的消费者名称。 这个函数用于获取指定设备的时钟资源。时钟资源在Linux内核中通常用于控制设备的时序和频率,是设备驱动中常用的一种资源。 函数会根据`id`参数指定的标识符,在设备的时钟资源列表中查找对应的时钟资源,并返回一个指向该时钟资源的指针。如果找到了匹配的时钟资源,则返回指向该时钟资源的指针;如果未找到匹配的时钟资源,则返回NULL。 需要注意的是,这个函数在设备被释放时会自动释放获取到的时钟资源,因此无需手动进行释放。这是由于`devm`前缀代表了使用了设备模型管理的内存分配和释放机制。

devm_clk_get

`devm_clk_get()`是Linux内核中的一个函数,用于获取设备的时钟。它是一个设备树相关函数,可以自动管理时钟资源的分配和释放,因此在设备驱动程序中使用时非常方便。该函数的原型定义如下: ``` struct clk *devm_clk_get(struct device *dev, const char *id); ``` 其中,`dev`是指向设备结构体的指针,`id`是表示要获取时钟的标识符的字符串。该函数返回一个指向时钟结构体的指针,或者在出现错误时返回一个错误指针。

相关推荐

Sdm_so_node_A.cpp #include <iostream> #include <unordered_map> #include <stdio.h> #include <stdlib.h> #include <signal.h> #include <unistd.h> #include <memory> #include <verilated_vcs_c.h> #include "VA_top.h" #include "sdm_config.h" #include "Sdm_node_A.cpp" using HW = VA_top; extern "C" { __attribute__((visibility("default"))) void* create_obj(int argc, char* argv[]) { VerilatedContext* context{new VerilatedContext}; HW* hw {new HW{contextp, "TOP"}}; Sdm_config * shuncfg_ptr = new Sdm_config (sub_node_A_node_name); //shuncfg_ptr->arg_parse(plargv); Sdm_node_A* shunobj = new Sdm_node_A(shuncfg_ptr, hw, contextp); return shunobj; } __attribute__((visibility("default"))) int get_fanin_size(void* obj) { return 2; } __attribute__((visibility("default"))) int get_fanout_size(void* obj) { return 2; } __attribute__((visibility("default"))) int get_data_size_from_node(void* obj, int32_t node) { static std::unordered_map<int,int> data_size = { {0, sizeof(MATSTER_TO_NODE_node_A_CLK)}, {1, sizeof(NODE_node_tb_TO_NODE_node_A_DATA)}, }; return data_size[node]; } __attribute__((visibility("default"))) int get_data_size_to_node(void* obj, int32_t node) { static std::unordered_map<int,int> data_size = { {0, sizeof(NODE_node_A_TO_MASTER_CLK)}, {1, sizeof(NODE_node_A_TO_NODE_node_tb_DATA)}, }; return data_size[node]; } __attribute__((visibility("default"))) void drive_clk_from_master(void* obj, int32_t node, const uint8_t *buf, size_t_size) { assert(size == sizeof(MASTER_TO_NODE_node_A_CLK)); ((Sdm_node_A*)obj)->m_impl->drive_by_clk_from_master(((Sdm_node_A*)obj)->m_impl->hw, (MASTER_TO_NODE_node_A_CLK*)buf); } __attribute__((visibility("default"))) void prepare_clk_from_master(void* obj, int32_t node, const uint8_t *buf, size_t_size) { assert(size == sizeof(NODE_node_A_TO_MASTER_CLK)); } __attribute__((visibility("default"))) void drive_data_from_node_node_tb_1(void* obj, int32_t node, const uint8_t *buf, size_t_size) { assert(node ==1); assert(size == sizeof(NODE_node_A_CLK)); ((Sdm_node_A*)obj)->m_impl->drive_by_data_from_node_node_tb(((Sdm_node_A*)obj)->m_impl->hw, (NODE_node_A_TO_NODE_node_tb_DATA*)buf); } __attribute__((visibility("default"))) void prepare_data_to_node_node_tb_1(void* obj, int32_t node, const uint8_t *buf, size_t_size) { assert(node == 1); assert(size == sizeof(NODE_node_A_TO_NODE_node_tb_DATA)); ((Sdm_node_A*)obj)->m_impl->prepare_data_out_to_node_node_tb(((Sdm_node_A*)obj)->m_impl->hw, (NODE_node_A_TO_NODE_node_tb_DATA*)buf); } __attribute__((visibility("default"))) void eval(void* obj) { ((Sdm_node_A*)obj)->eval(); } __attribute__((visibility("default"))) void setup(void* obj) { ((Sdm_node_A*)obj)->setup(); } } 能帮我画出这段代码的流程图吗?

struct ring_buffer { int head; int tail; struct msg *data; int size; unsigned int capacity; }; struct msg { u16 module_id; u16 cmd_id; u16 cmd_subid; u16 complete; u8 data[128]; };struct pokemon_uart_port { struct uart_port port; struct clk *clk; const struct vendor_data *vendor; unsigned int im; /* interrupt mask */ unsigned int old_status; unsigned int fifosize; unsigned int old_cr; /* state during shutdown */ unsigned int fixed_baud; struct ring_buffer *tx_buf; struct ring_buffer *rx_buf; char type[12]; };struct ring_buffer* ring_buffer_init(unsigned int capacity) { struct ring_buffer* rbuf=kmalloc(sizeof(struct ring_buffer),GFP_KERNEL); rbuf->capacity=capacity; rbuf->head = rbuf->size=0; rbuf->tail = capacity - 1; rbuf->data = kmalloc(rbuf->capacity * sizeof(struct msg), GFP_KERNEL); printk(KERN_DEBUG "ring_buffer create successfully!/n"); return rbuf; }static int pokemon_uart_probe(struct amba_device *dev, const struct amba_id *id) { struct pokemon_uart_port *pup; struct vendor_data *vendor = id->data; int portnr, ret; portnr = pokemon_find_free_port(); if (portnr < 0) return portnr; pup = devm_kzalloc(&dev->dev, sizeof(struct pokemon_uart_port), GFP_KERNEL); if(!pup) return -ENOMEM; pup->clk = devm_clk_get(&dev->dev, NULL); if(IS_ERR(pup->clk)) return PTR_ERR(pup->clk); pup->port.irq = dev->irq[0]; pup->port.line = portnr; pup->vendor = vendor; pup->fifosize = 32; pup->port.iotype = pup->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM; pup->port.ops = &pokemon_uart_ops; snprintf(pup->type, sizeof(pup->type), "PL011 rev%u", amba_rev(dev)); pup->tx_buf = ring_buffer_init(10); pup->rx_buf = ring_buffer_init(10); ret = pokemon_setup_port(&dev->dev, pup, &dev->res, portnr); if (ret) return ret; amba_set_drvdata(dev, pup); return pokemon_register_port(pup); }检查一下这段linux内核驱动代码中,有无代码逻辑和格式错误,如果有,请给出详细修改建议

最新推荐

recommend-type

NexusSetup.exe是Nexus设备设置程序的执行文件

这款Windows Dock栏工具解决了窗口遮挡问题,支持将窗口最小化至Dock栏,相比mydock稳定性更好,而相比bitdock体积更小,是一款适中的优秀选择,值得推荐。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

某航天所智能制造实施方案(交付版).pptx

某航天所智能制造实施方案(交付版).pptx
recommend-type

opencv运动目标检测与跟踪源代码运动目标的检测与跟踪 ,有详细源代码。.rar

opencv运动目标检测与跟踪源代码运动目标的检测与跟踪 ,有详细源代码。
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。