pytorch画loss曲线的实例

时间: 2023-11-06 21:56:02 浏览: 34
很高兴为您解答。以下是 PyTorch 画 loss 曲线的实例代码: ```python import torch import matplotlib.pyplot as plt # 假设 loss 存储在一个列表中 losses = [0.1, 0.08, 0.06, 0.04, 0.02, 0.01] # 画出 loss 曲线 plt.plot(losses) plt.xlabel('Epoch') plt.ylabel('Loss') plt.title('Loss Curve') plt.show() ``` 上述代码可以让您快速画出 loss 曲线,以便更直观地了解训练的效果。希望对您有所帮助。
相关问题

Transformers做cifar-10图像分类任务pytorch版本效果好且画出loss变化曲线以及准确率变化曲线的代码以及测试代码

以下是使用PyTorch实现Transformer模型进行CIFAR-10图像分类任务的代码,同时画出了loss变化曲线和准确率变化曲线: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 定义超参数 num_epochs = 10 batch_size = 128 learning_rate = 0.001 # 加载CIFAR-10数据集并做数据增强 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # 定义Transformer模型 class TransformerModel(nn.Module): def __init__(self, input_dim, hidden_dim, num_classes, num_layers, num_heads, dropout): super().__init__() self.embedding = nn.Linear(input_dim, hidden_dim) self.pos_encoding = PositionalEncoding(hidden_dim, dropout) self.transformer_layers = nn.ModuleList([ TransformerLayer(hidden_dim, num_heads, dropout) for _ in range(num_layers) ]) self.fc = nn.Linear(hidden_dim, num_classes) def forward(self, x): x = self.embedding(x) x = self.pos_encoding(x) for layer in self.transformer_layers: x = layer(x) x = torch.mean(x, dim=1) x = self.fc(x) return x class PositionalEncoding(nn.Module): def __init__(self, hidden_dim, dropout, max_len=5000): super().__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, hidden_dim) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, hidden_dim, 2).float() * (-math.log(10000.0) / hidden_dim)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) class TransformerLayer(nn.Module): def __init__(self, hidden_dim, num_heads, dropout): super().__init__() self.self_attn = nn.MultiheadAttention(hidden_dim, num_heads, dropout=dropout) self.dropout1 = nn.Dropout(p=dropout) self.norm1 = nn.LayerNorm(hidden_dim) self.fc = nn.Sequential( nn.Linear(hidden_dim, 4 * hidden_dim), nn.GELU(), nn.Linear(4 * hidden_dim, hidden_dim), nn.Dropout(p=dropout) ) self.dropout2 = nn.Dropout(p=dropout) self.norm2 = nn.LayerNorm(hidden_dim) def forward(self, x): attn_output, _ = self.self_attn(x, x, x) x = x + self.dropout1(attn_output) x = self.norm1(x) fc_output = self.fc(x) x = x + self.dropout2(fc_output) x = self.norm2(x) return x # 实例化模型 model = TransformerModel(input_dim=32*32*3, hidden_dim=512, num_classes=10, num_layers=6, num_heads=8, dropout=0.1).to(device) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 train_loss_list = [] train_acc_list = [] test_loss_list = [] test_acc_list = [] total_step = len(train_loader) for epoch in range(num_epochs): running_loss = 0.0 running_corrects = 0 for i, (images, labels) in enumerate(train_loader): images = images.reshape(-1, 32*32*3).to(device) labels = labels.to(device) outputs = model(images) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() _, predicted = torch.max(outputs.data, 1) running_loss += loss.item() * images.size(0) running_corrects += torch.sum(predicted == labels.data) if (i+1) % 100 == 0: print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) epoch_loss = running_loss / len(train_dataset) epoch_acc = running_corrects.double() / len(train_dataset) train_loss_list.append(epoch_loss) train_acc_list.append(epoch_acc) print('Epoch [{}/{}], Train Loss: {:.4f}, Train Accuracy: {:.4f}' .format(epoch+1, num_epochs, epoch_loss, epoch_acc)) # 在测试集上测试模型 with torch.no_grad(): running_loss = 0.0 running_corrects = 0 for images, labels in test_loader: images = images.reshape(-1, 32*32*3).to(device) labels = labels.to(device) outputs = model(images) loss = criterion(outputs, labels) _, predicted = torch.max(outputs.data, 1) running_loss += loss.item() * images.size(0) running_corrects += torch.sum(predicted == labels.data) epoch_loss = running_loss / len(test_dataset) epoch_acc = running_corrects.double() / len(test_dataset) test_loss_list.append(epoch_loss) test_acc_list.append(epoch_acc) print('Epoch [{}/{}], Test Loss: {:.4f}, Test Accuracy: {:.4f}' .format(epoch+1, num_epochs, epoch_loss, epoch_acc)) # 画出loss变化曲线和准确率变化曲线 plt.subplot(2, 1, 1) plt.plot(train_loss_list, label='Train') plt.plot(test_loss_list, label='Test') plt.title('Loss') plt.legend() plt.subplot(2, 1, 2) plt.plot(train_acc_list, label='Train') plt.plot(test_acc_list, label='Test') plt.title('Accuracy') plt.legend() plt.show() # 在测试集上测试模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.reshape(-1, 32*32*3).to(device) labels = labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy: {:.4f}'.format(correct / total)) ``` 在上面的代码中,我们使用了PyTorch内置的`nn.MultiheadAttention`和`nn.LayerNorm`来实现Transformer模型中的自注意力机制和层归一化,同时也实现了Transformer中的位置编码和前馈网络。在训练过程中,我们记录了每个epoch的训练集loss和准确率、测试集loss和准确率,并画出了loss变化曲线和准确率变化曲线。最后,我们在测试集上测试了模型的准确率。

pytorch训练cifar10并输出 ROC曲线的python代码

以下是使用PyTorch训练cifar10并输出ROC曲线的Python代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt # 定义数据增强和预处理 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # 加载cifar10数据集 trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2) # 构建卷积神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3, padding=1) self.bn1 = nn.BatchNorm2d(32) self.conv2 = nn.Conv2d(32, 64, 3, padding=1) self.bn2 = nn.BatchNorm2d(64) self.conv3 = nn.Conv2d(64, 128, 3, padding=1) self.bn3 = nn.BatchNorm2d(128) self.fc1 = nn.Linear(4 * 4 * 128, 512) self.bn4 = nn.BatchNorm1d(512) self.fc2 = nn.Linear(512, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.conv2(x) x = self.bn2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.conv3(x) x = self.bn3(x) x = nn.functional.relu(x) x = x.view(-1, 4 * 4 * 128) x = self.fc1(x) x = self.bn4(x) x = nn.functional.relu(x) x = self.fc2(x) return x # 实例化模型、损失函数和优化器 net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print('[Epoch %d] loss: %.3f' % (epoch + 1, running_loss / len(trainloader))) # 使用测试集评估模型 correct = 0 total = 0 pred_prob = [] true_labels = [] with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() pred_prob.append(outputs.numpy()) true_labels.append(labels.numpy()) test_acc = 100 * correct / total pred_prob = torch.cat(pred_prob, 0) true_labels = torch.cat(true_labels, 0) # 计算ROC曲线和AUC值 fpr, tpr, thresholds = roc_curve(true_labels, pred_prob[:, 1]) roc_auc = auc(fpr, tpr) # 绘制ROC曲线 plt.figure() plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.show() ``` 需要安装的Python库有:PyTorch、scikit-learn和matplotlib。代码中的卷积神经网络模型和训练参数可以根据需求进行修改。

相关推荐

最新推荐

recommend-type

PyTorch-GPU加速实例

主要介绍了PyTorch-GPU加速实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch 的损失函数Loss function使用详解

今天小编就为大家分享一篇Pytorch 的损失函数Loss function使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch: 自定义网络层实例

今天小编就为大家分享一篇Pytorch: 自定义网络层实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch中accuracy和loss的计算知识点总结

在本片文章里小编给大家整理的是关于Pytorch中accuracy和loss的计算相关知识点内容,有需要的朋友们可以学习下。
recommend-type

PyTorch 对应点相乘、矩阵相乘实例

今天小编就为大家分享一篇PyTorch 对应点相乘、矩阵相乘实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

前端深拷贝 和浅拷贝有哪些方式,你在哪里使用过

前端深拷贝和浅拷贝的方式有很多,下面列举几种常用的方式: 深拷贝: 1. JSON.parse(JSON.stringify(obj)),该方法可以将对象序列化为字符串,再将字符串反序列化为新的对象,从而实现深拷贝。但是该方法有一些限制,例如无法拷贝函数、RegExp等类型的数据。 2. 递归拷贝,即遍历对象的每个属性并进行拷贝,如果属性值是对象,则递归进行拷贝。 3. 使用第三方库如lodash、jQuery等提供的深拷贝方法。 浅拷贝: 1. Object.assign(target, obj1, obj2, ...),该方法可以将源对象的属性浅拷贝到目标对象中,如果有相同的属性,则会
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。