用Java编写过河问题:问题转变为:假如有n个牧师和n个野人准备渡河,但只有一条能容纳c个人的小船,为了防止野人侵犯牧师,要求无论在何处,牧师的人数不得少于野人的人数(除非牧师人数为0),且假定两种人都会划船,试设计一个算法,确定它们能否渡过河去,若能,则给出一只小船来回次数最少的最佳方案。
时间: 2023-10-01 20:03:12 浏览: 101
以下是用Java编写的河问题的解法:
```java
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
public class RiverCrossing {
private static final int NUM_OF_PASSENGERS = 3; // 每次最多能过河的人数
private static final int NUM_OF_PASSENGERS_TYPE = 2; // 人的种类数量(牧师和野人)
private static final int NUM_OF_BOAT_SEATS = 2; // 小船可以坐的人数
private static final int START_STATE = 0; // 起始状态
private static final int END_STATE = (1 << (NUM_OF_PASSENGERS * NUM_OF_PASSENGERS_TYPE)) - 1; // 终止状态
private static final int LEFT_BANK = 0; // 左岸
private static final int RIGHT_BANK = 1; // 右岸
private static final int MISSIONARY = 0; // 牧师
private static final int CANNIBAL = 1; // 野人
// 判断当前状态是否合法
private static boolean isValid(int state) {
int leftBank[] = decodeState(state, LEFT_BANK);
int rightBank[] = decodeState(state, RIGHT_BANK);
if (leftBank[MISSIONARY] != 0 && leftBank[MISSIONARY] < leftBank[CANNIBAL])
return false;
if (rightBank[MISSIONARY] != 0 && rightBank[MISSIONARY] < rightBank[CANNIBAL])
return false;
return true;
}
// 将状态转换为数组
private static int[] decodeState(int state, int bank) {
int[] bankArray = new int[NUM_OF_PASSENGERS_TYPE];
for (int i = 0; i < NUM_OF_PASSENGERS; i++) {
int passengerType = (state >> (i * NUM_OF_PASSENGERS_TYPE + bank * NUM_OF_PASSENGERS_TYPE * NUM_OF_PASSENGERS))
& (NUM_OF_PASSENGERS_TYPE - 1);
bankArray[passengerType]++;
}
return bankArray;
}
// 将数组转换为状态
private static int encodeState(int[] leftBank, int[] rightBank) {
int state = 0;
for (int i = 0; i < NUM_OF_PASSENGERS; i++) {
state |= (leftBank[MISSIONARY] > i ? MISSIONARY : CANNIBAL)
<< (i * NUM_OF_PASSENGERS_TYPE + LEFT_BANK * NUM_OF_PASSENGERS_TYPE * NUM_OF_PASSENGERS);
state |= (rightBank[MISSIONARY] > i ? MISSIONARY : CANNIBAL)
<< (i * NUM_OF_PASSENGERS_TYPE + RIGHT_BANK * NUM_OF_PASSENGERS_TYPE * NUM_OF_PASSENGERS);
}
return state;
}
// 判断状态是否是终止状态
private static boolean isEndState(int state) {
return state == END_STATE;
}
// 判断两个状态是否相等
private static boolean isEqual(int state1, int state2) {
return state1 == state2;
}
// 判断一个状态是否已经被访问过
private static boolean isVisited(int state, Set<Integer> visitedStates) {
return visitedStates.contains(state);
}
// 获取下一个可能的状态
private static List<Integer> getNextPossibleStates(int state) {
List<Integer> nextPossibleStates = new ArrayList<>();
int[] leftBank = decodeState(state, LEFT_BANK);
int[] rightBank = decodeState(state, RIGHT_BANK);
int boatPosition = LEFT_BANK;
if (leftBank[NUM_OF_PASSENGERS_TYPE - 1] == NUM_OF_PASSENGERS
&& isEndState(encodeState(rightBank, leftBank))) {
nextPossibleStates.add(encodeState(leftBank, rightBank));
return nextPossibleStates;
}
if (rightBank[NUM_OF_PASSENGERS_TYPE - 1] == NUM_OF_PASSENGERS
&& isEndState(encodeState(leftBank, rightBank))) {
nextPossibleStates.add(encodeState(leftBank, rightBank));
return nextPossibleStates;
}
if (leftBank[MISSIONARY] >= 1 && boatPosition == LEFT_BANK) {
int[] newLeftBank = leftBank.clone();
int[] newRightBank = rightBank.clone();
newLeftBank[MISSIONARY]--;
newRightBank[MISSIONARY]++;
if (isValid(encodeState(newLeftBank, newRightBank)))
nextPossibleStates.add(encodeState(newLeftBank, newRightBank));
}
if (leftBank[CANNIBAL] >= 1 && boatPosition == LEFT_BANK) {
int[] newLeftBank = leftBank.clone();
int[] newRightBank = rightBank.clone();
newLeftBank[CANNIBAL]--;
newRightBank[CANNIBAL]++;
if (isValid(encodeState(newLeftBank, newRightBank)))
nextPossibleStates.add(encodeState(newLeftBank, newRightBank));
}
if (leftBank[MISSIONARY] >= 2 && boatPosition == LEFT_BANK) {
int[] newLeftBank = leftBank.clone();
int[] newRightBank = rightBank.clone();
newLeftBank[MISSIONARY] -= 2;
newRightBank[MISSIONARY] += 2;
if (isValid(encodeState(newLeftBank, newRightBank)))
nextPossibleStates.add(encodeState(newLeftBank, newRightBank));
}
if (leftBank[CANNIBAL] >= 2 && boatPosition == LEFT_BANK) {
int[] newLeftBank = leftBank.clone();
int[] newRightBank = rightBank.clone();
newLeftBank[CANNIBAL] -= 2;
newRightBank[CANNIBAL] += 2;
if (isValid(encodeState(newLeftBank, newRightBank)))
nextPossibleStates.add(encodeState(newLeftBank, newRightBank));
}
if (leftBank[MISSIONARY] >= 1 && leftBank[CANNIBAL] >= 1 && boatPosition == LEFT_BANK) {
int[] newLeftBank = leftBank.clone();
int[] newRightBank = rightBank.clone();
newLeftBank[MISSIONARY]--;
newLeftBank[CANNIBAL]--;
newRightBank[MISSIONARY]++;
newRightBank[CANNIBAL]++;
if (isValid(encodeState(newLeftBank, newRightBank)))
nextPossibleStates.add(encodeState(newLeftBank, newRightBank));
}
if (rightBank[MISSIONARY] >= 1 && boatPosition == RIGHT_BANK) {
int[] newLeftBank = leftBank.clone();
int[] newRightBank = rightBank.clone();
newRightBank[MISSIONARY]--;
newLeftBank[MISSIONARY]++;
if (isValid(encodeState(newLeftBank, newRightBank)))
nextPossibleStates.add(encodeState(newLeftBank, newRightBank));
}
if (rightBank[CANNIBAL] >= 1 && boatPosition == RIGHT_BANK) {
int[] newLeftBank = leftBank.clone();
int[] newRightBank = rightBank.clone();
newRightBank[CANNIBAL]--;
newLeftBank[CANNIBAL]++;
if (isValid(encodeState(newLeftBank, newRightBank)))
nextPossibleStates.add(encodeState(newLeftBank, newRightBank));
}
if (rightBank[MISSIONARY] >= 2 && boatPosition == RIGHT_BANK) {
int[] newLeftBank = leftBank.clone();
int[] newRightBank = rightBank.clone();
newRightBank[MISSIONARY] -= 2;
newLeftBank[MISSIONARY] += 2;
if (isValid(encodeState(newLeftBank, newRightBank)))
nextPossibleStates.add(encodeState(newLeftBank, newRightBank));
}
if (rightBank[CANNIBAL] >= 2 && boatPosition == RIGHT_BANK) {
int[] newLeftBank = leftBank.clone();
int[] newRightBank = rightBank.clone();
newRightBank[CANNIBAL] -= 2;
newLeftBank[CANNIBAL] += 2;
if (isValid(encodeState(newLeftBank, newRightBank)))
nextPossibleStates.add(encodeState(newLeftBank, newRightBank));
}
if (rightBank[MISSIONARY] >= 1 && rightBank[CANNIBAL] >= 1 && boatPosition == RIGHT_BANK) {
int[] newLeftBank = leftBank.clone();
int[] newRightBank = rightBank.clone();
newRightBank[MISSIONARY]--;
newRightBank[CANNIBAL]--;
newLeftBank[MISSIONARY]++;
newLeftBank[CANNIBAL]++;
if (isValid(encodeState(newLeftBank, newRightBank)))
nextPossibleStates.add(encodeState(newLeftBank, newRightBank));
}
return nextPossibleStates;
}
// 搜索最短路径
private static List<Integer> search() {
List<Integer> shortestPath = new ArrayList<>();
Set<Integer> visitedStates = new HashSet<>();
List<List<Integer>> paths = new ArrayList<>();
List<Integer> startPath = new ArrayList<>();
startPath.add(START_STATE);
paths.add(startPath);
while (!paths.isEmpty()) {
List<Integer> currentPath = paths.remove(0);
int currentState = currentPath.get(currentPath.size() - 1);
if (isEndState(currentState)) {
if (shortestPath.isEmpty() || currentPath.size() < shortestPath.size())
shortestPath = currentPath;
continue;
}
visitedStates.add(currentState);
List<Integer> nextPossibleStates = getNextPossibleStates(currentState);
for (int nextState : nextPossibleStates) {
if (isVisited(nextState, visitedStates))
continue;
List<Integer> nextPath = new ArrayList<>(currentPath);
nextPath.add(nextState);
paths.add(nextPath);
}
}
return shortestPath;
}
// 打印结果
private static void printResult(List<Integer> path) {
System.out.println("Number of boat trips: " + (path.size() - 1));
for (int i = 0; i < path.size() - 1; i++) {
int[] leftBank = decodeState(path.get(i), LEFT_BANK);
int[] rightBank = decodeState(path.get(i), RIGHT_BANK);
int[] nextLeftBank = decodeState(path.get(i + 1), LEFT_BANK);
int[] nextRightBank = decodeState(path.get(i + 1), RIGHT_BANK);
System.out.println("From left bank to right bank: ");
System.out.println("Missionaries: " + (leftBank[MISSIONARY] - nextLeftBank[MISSIONARY]));
System.out.println("Cannibals: " + (leftBank[CANNIBAL] - nextLeftBank[CANNIBAL]));
System.out.println("From right bank to left bank: ");
System.out.println("Missionaries: " + (rightBank[MISSIONARY] - nextRightBank[MISSIONARY]));
System.out.println("Cannibals: " + (rightBank[CANNIBAL] - nextRightBank[CANNIBAL]));
}
}
public static void main(String[] args) {
List<Integer> path = search();
printResult(path);
}
}
```
该程序将所有可能的状态表示为一个二进制数,并使用两个数组来表示左岸和右岸上的每种人的数量。搜索算法使用BFS,并利用isValid,encodeState和decodeState函数来处理状态。getNextPossibleStates函数返回下一组可能的状态。程序搜索最短路径,然后打印出每次小船的行动。
阅读全文