n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target
时间: 2024-04-26 09:22:01 浏览: 106
这段代码是在对上面定义的4个机器学习模型进行训练和测试。首先通过一个双重循环,对每一对特征进行训练和测试。具体来说,这里的特征对是[0,1]、[0,2]和[2,3],即iris数据集中的前两个、第一个和第三个、第三个和第四个特征。接着对于每一对特征和每一个模型,从iris数据集中取出相应的特征和标签。接下来的代码没有给出,但通常会将数据集划分为训练集和测试集,使用训练集对模型进行训练,使用测试集对模型进行测试,并计算模型的性能指标,如准确率、召回率和F1值等。最后,将结果绘制成图形,以便直观地了解不同模型和特征对的性能表现。
相关问题
n_classes = 3 n_estimators = 30 plot_colors = "ryb" cmap = plt.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), 将上面的代码加上注释
下面是对该代码的注释:
```python
# 导入需要的库和模块
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier
import matplotlib.pyplot as plt
import numpy as np
# 定义需要的参数
n_classes = 3 # 类别数
n_estimators = 30 # 集成模型中基分类器的数量
plot_colors = "ryb" # 绘图时使用的颜色
cmap = plt.cm.RdYlBu # 绘图时使用的颜色映射
plot_step = 0.02 # 决策面轮廓线的细度
plot_step_coarser = 0.5 # 粗略分类器猜测的步骤宽度
RANDOM_SEED = 13 # 每次迭代时固定种子
# 加载鸢尾花数据集
iris = load_iris()
# 设置绘图的子图位置
plot_idx = 1
# 定义四个基分类器
models = [DecisionTreeClassifier(max_depth=None), # 决策树
RandomForestClassifier(n_estimators=n_estimators), # 随机森林
ExtraTreesClassifier(n_estimators=n_estimators), # 极端随机树
AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), # AdaBoost
n_estimators=n_estimators)]
# 开始绘制四个基分类器的决策面
for pair in ([0, 1], [0, 2], [2, 3]):
for model in models:
# 从数据集中选取两个特征作为x轴和y轴
X = iris.data[:, pair]
y = iris.target
# 随机化样本,将数据集分成训练集和测试集
idx = np.arange(X.shape[0])
np.random.seed(RANDOM_SEED)
np.random.shuffle(idx)
X = X[idx]
y = y[idx]
half = int(X.shape[0] / 2)
X_train, X_test = X[:half], X[half:]
y_train, y_test = y[:half], y[half:]
# 训练基分类器
model.fit(X_train, y_train)
# 绘制训练集和测试集的散点图
plt.subplot(3, 4, plot_idx)
plt.tight_layout()
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cmap, edgecolor='k')
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap, alpha=0.6, edgecolor='k')
# 绘制决策面轮廓线
xx, yy = np.meshgrid(np.arange(X[:, 0].min() - 1, X[:, 0].max() + 1, plot_step),
np.arange(X[:, 1].min() - 1, X[:, 1].max() + 1, plot_step))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=cmap, alpha=.5)
# 绘制分类器猜测的决策面轮廓线
xx_coarser, yy_coarser = np.meshgrid(np.arange(X[:, 0].min() - 1, X[:, 0].max() + 1, plot_step_coarser),
np.arange(X[:, 1].min() - 1, X[:, 1].max() + 1, plot_step_coarser))
Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape)
cs_points = plt.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolor='none')
# 设置图像的标题和绘图的标签
plt.title(pair)
plot_idx += 1
# 显示绘制结果
plt.suptitle("Classifiers on feature subsets of the Iris dataset")
plt.axis("tight")
plt.show()
```
阅读全文