# 加载数据集from sklearn.datasets import load_irisiris = load_iris()X = iris.data# 数据预处理from sklearn.preprocessing import StandardScalerscaler = StandardScaler()X_scaled = scaler.fit_transform(X)# 使用K-means算法聚类from sklearn.cluster import KMeanskmeans = KMeans(n_clusters=3, random_state=42)kmeans.fit(X_scaled)y_pred = kmeans.predict(X_scaled)# 使用轮廓系数评估聚类方法的优劣from sklearn.metrics import silhouette_scoresilhouette_score(X_scaled, y_pred)
时间: 2024-02-17 14:01:10 浏览: 40
这段代码是一个完整的Python示例,用于对鸢尾花数据进行K-means算法聚类,并使用轮廓系数评估聚类方法的优劣。代码中首先加载鸢尾花数据集,然后对数据进行预处理,接着使用K-means算法将数据聚类为三个簇,最后使用轮廓系数评估聚类方法的优劣。
需要注意的是,在导入数据集时,代码中使用了`iris`变量,但在加载数据集时使用了`load_iris()`函数,这里应该将变量名修改为`iris = load_iris()`。
另外,`StandardScaler()`函数实例化的对象名应该是`scaler`,而不是`StandardScaler`。
以下是修改后的代码:
```python
# 加载数据集
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
# 数据预处理
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 使用K-means算法聚类
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3, random_state=42)
kmeans.fit(X_scaled)
y_pred = kmeans.predict(X_scaled)
# 使用轮廓系数评估聚类方法的优劣
from sklearn.metrics import silhouette_score
silhouette_score(X_scaled, y_pred)
```
请注意,这段代码运行需要安装`scikit-learn`库。
阅读全文