bert预训练代码
时间: 2023-07-03 12:12:26 浏览: 108
下面是使用PyTorch实现BERT预训练的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
from torch.utils.data import DataLoader, Dataset
from transformers import BertTokenizer, BertModel
# 载入预训练的BERT模型和词汇表
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertModel.from_pretrained('bert-base-chinese')
# 定义数据集
class MyDataset(Dataset):
def __init__(self, texts):
self.texts = texts
def __getitem__(self, index):
text = self.texts[index]
tokenized_text = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
return tokenized_text
def __len__(self):
return len(self.texts)
# 定义训练参数
batch_size = 32
num_epochs = 10
learning_rate = 1e-4
# 定义模型和优化器
class BertPretrain(nn.Module):
def __init__(self):
super(BertPretrain, self).__init__()
self.bert = model
def forward(self, input_ids, attention_mask):
outputs = self.bert(input_ids, attention_mask)
return outputs.last_hidden_state
model = BertPretrain()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 载入数据集
dataset = MyDataset(texts)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 训练模型
for epoch in range(num_epochs):
for i, batch in enumerate(dataloader):
input_ids = batch['input_ids'].squeeze(1)
attention_mask = batch['attention_mask'].squeeze(1)
optimizer.zero_grad()
outputs = model(input_ids, attention_mask)
loss = outputs.mean()
loss.backward()
optimizer.step()
if i % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(dataloader), loss.item()))
```
在这个例子中,我们首先使用`BertTokenizer`和`BertModel`从预训练模型中载入BERT模型和词汇表,然后定义了一个数据集`MyDataset`和数据加载器`DataLoader`,并将其用于训练模型。我们还定义了一个`BertPretrain`类,用于实例化BERT模型和定义前向传递。最后,我们使用Adam优化器和均方误差损失训练模型。
阅读全文