def generate_big_rules(L, support_data, min_conf): """ Generate big rules from frequent itemsets. Args: L: The list of Lk. support_data: A dictionary. The key is frequent itemset and the value is support. min_conf: Minimal confidence. Returns: big_rule_list: A list which contains all big rules. Each big rule is represented as a 3-tuple. """ big_rule_list = [] sub_set_list = [] for i in range(0, len(L)): for freq_set in L[i]: for sub_set in sub_set_list: if sub_set.issubset(freq_set): conf = support_data[freq_set] / support_data[freq_set - sub_set] big_rule = (freq_set - sub_set, sub_set, conf) if conf >= min_conf and big_rule not in big_rule_list: # print freq_set-sub_set, " => ", sub_set, "conf: ", conf big_rule_list.append(big_rule) sub_set_list.append(freq_set) return big_rule_list

时间: 2024-02-15 08:11:35 浏览: 32
这段代码实现了Apriori算法中的关联规则生成过程。在频繁项集挖掘结束后,可以根据频繁项集生成关联规则,并计算关联规则的置信度,筛选出满足最小置信度要求的强关联规则。 函数generate_big_rules的输入参数包括频繁项集列表L、支持度字典support_data和最小置信度min_conf。其中,频繁项集列表L是一个包含多个列表的列表,每个列表包含若干个频繁项集;支持度字典support_data是一个字典,存储频繁项集及其支持度信息;最小置信度min_conf是指一个关联规则的置信度必须大于等于min_conf才能被认为是强关联规则。 函数内部首先创建了一个空列表big_rule_list,用于存储所有满足要求的强关联规则。接着,创建了一个空列表sub_set_list,用于存储已经检查过的子集,避免重复计算。 通过两个嵌套的循环,对每个频繁项集及其子集进行遍历,计算置信度,并将满足要求的关联规则存储在big_rule_list中。具体来说,外层循环遍历每个频繁项集,内层循环遍历该频繁项集的所有子集。对于每个子集,计算该关联规则的置信度,如果大于等于min_conf并且该关联规则不在big_rule_list中,则将该关联规则加入big_rule_list中。 最后,函数generate_big_rules返回所有满足要求的强关联规则列表big_rule_list。每个关联规则被表示为一个3元组,包括规则的前件、后件以及置信度。
相关问题

def generate_L(data_set, k, min_support): """ Generate all frequent itemsets. Args: data_set: A list of transactions. Each transaction contains several items. k: Maximum number of items for all frequent itemsets. min_support: The minimum support. Returns: L: The list of Lk. support_data: A dictionary. The key is frequent itemset and the value is support. """ support_data = {} C1 = create_C1(data_set) L1 = generate_Lk_by_Ck(data_set, C1, min_support, support_data) Lksub1 = L1.copy() L = [] L.append(Lksub1) for i in range(2, k + 1): Ci = create_Ck(Lksub1, i) Li = generate_Lk_by_Ck(data_set, Ci, min_support, support_data) Lksub1 = Li.copy() L.append(Lksub1) return L, support_data

这段代码实现了Apriori算法中的频繁项集挖掘过程。Apriori算法是一种常见的关联规则挖掘算法,用于发现数据集中的频繁项集。 函数generate_L的输入参数包括数据集data_set、最大项数k和最小支持度min_support。其中,数据集data_set是一个列表,每个元素表示一条交易记录,其中包含多个项;最大项数k是指挖掘的频繁项集中最多包含的项数;最小支持度min_support是指一个项集在所有交易记录中出现的次数占比必须大于等于min_support才能被认为是频繁项集。 函数内部首先创建了一个空字典support_data,用于存储频繁项集及其支持度信息。然后调用函数create_C1创建初始候选项集C1,再调用函数generate_Lk_by_Ck根据C1生成频繁1项集L1。接着,将L1存储在列表L中,并将L1赋值给Lksub1,表示当前频繁项集的项数为1。 接下来,函数generate_L通过一个循环,依次生成包含2~k个项的频繁项集。在每次循环中,首先调用函数create_Ck根据Lksub1生成候选项集Ci,然后调用函数generate_Lk_by_Ck根据Ci生成频繁项集Li。将Li存储在列表L中,并将Li赋值给Lksub1,表示当前频繁项集的项数为i。最后,函数generate_L返回频繁项集列表L和支持度字典support_data。

from apriori import * # 编写代码实现关联规则抽取 dataset = load_data('data/apriori.txt') # 定义 generate_big_rules函数来获取关联规则 def generate_big_rules(L, support_data, min_conf): big_rule_list = [] sub_set_list = [] for i in range(0, len(L)): for freq_set in L[i]: # freq_set:('B4')、('B4', 'C4', 'H4') for sub_set in sub_set_list: #**************** BEGIN ***************** if sub_set.issubset(freq_set): # 计算置信度 # 前件、后件、支持度、置信度 #**************** END ******************* sub_set_list.append(freq_set) return big_rule_list def task(): L, support_data = generate_L(dataset, k=4, min_support=0.06) # 根据频繁项集寻找关联规则,设置置信度为 0.75 big_rules_list = generate_big_rules(L, support_data, min_conf=0.75) return big_rules_list

这段代码的功能是实现关联规则抽取,具体步骤如下: 1. 使用apriori.py中的load_data方法从文件中读入经过离散化处理后的数据集。 2. 定义generate_big_rules函数来获取关联规则。该函数的输入参数包括频繁项集L、支持度信息support_data和最小置信度min_conf。 3. 在函数中,通过两层循环遍历频繁项集L,对于每个频繁项freq_set,再遍历它的子集sub_set_list,判断子集是否是freq_set的子集,如果是,则计算置信度并保存关联规则。 4. 最后返回关联规则列表big_rule_list。 5. 在task函数中,调用generate_L方法得到频繁项集L和支持度信息support_data,然后调用generate_big_rules方法得到关联规则列表big_rules_list,并将其作为返回值。 需要注意的是,该代码中的generate_L函数没有给出,因此可能需要在其他地方进行定义。

相关推荐

最新推荐

recommend-type

使用VS2019编译CEF2623项目的libcef_dll_wrapper.lib的方法

* Where is the source code:cef_binary_3.2623.1401.gb90a3be_windows32解压后的路径 * where to build the binaries:cef_binary_3.2623.1401.gb90a3be_windows32解压后的路径 * Configure:选择电脑上装有的VS的...
recommend-type

DC工具中set_dont_touch和set_size_only的区别.doc

在集成电路设计领域,DC(Design Compiler)是一款广泛使用的综合工具,它能够将高级语言描述的逻辑设计转换成门级网表,以便进一步进行布局布线。在这个过程中,设计师有时需要对某些特定部分进行保护,避免在综合...
recommend-type

地县级城市建设道路清扫保洁面积 道路清扫保洁面积道路机械化清扫保洁面积 省份 城市.xlsx

数据含省份、行政区划级别(细分省级、地级市、县级市)两个变量,便于多个角度的筛选与应用 数据年度:2002-2022 数据范围:全693个地级市、县级市、直辖市城市,含各省级的汇总tongji数据 数据文件包原始数据(由于多年度指标不同存在缺失值)、线性插值、回归填补三个版本,提供您参考使用。 其中,回归填补无缺失值。 填补说明: 线性插值。利用数据的线性趋势,对各年份中间的缺失部分进行填充,得到线性插值版数据,这也是学者最常用的插值方式。 回归填补。基于ARIMA模型,利用同一地区的时间序列数据,对缺失值进行预测填补。 包含的主要城市: 通州 石家庄 藁城 鹿泉 辛集 晋州 新乐 唐山 开平 遵化 迁安 秦皇岛 邯郸 武安 邢台 南宫 沙河 保定 涿州 定州 安国 高碑店 张家口 承德 沧州 泊头 任丘 黄骅 河间 廊坊 霸州 三河 衡水 冀州 深州 太原 古交 大同 阳泉 长治 潞城 晋城 高平 朔州 晋中 介休 运城 永济 .... 等693个地级市、县级市,含省级汇总 主要指标:
recommend-type

从网站上学习到了路由的一系列代码

今天的学习圆满了
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依