`training_epoch_end`
时间: 2023-10-22 16:06:40 浏览: 258
解决Alexnet训练模型在每个epoch中准确率和loss都会一升一降问题
`training_epoch_end` 是一个在训练过程中的每个 epoch 结束时被调用的函数。在训练神经网络时,通常会分为多个 epoch,每个 epoch 表示模型遍历整个训练数据集的一次。而 `training_epoch_end` 函数则用于对每个 epoch 进行一些后处理操作。
在 `training_epoch_end` 函数中,可以执行一些与模型训练相关的操作,例如计算并记录训练集和验证集上的指标,绘制训练曲线图等。这个函数可以提供有关每个 epoch 的一些统计信息,以便在训练过程中进行监控和可视化。
需要注意的是,`training_epoch_end` 函数是在每个 epoch 结束时被调用的,而不是在整个训练过程结束时被调用的。在这个函数中,你可以访问当前 epoch 的模型状态、损失值、准确率等信息,并根据需要进行自定义处理。
这只是对 `training_epoch_end` 的一个简要解释,具体的使用方法和实现细节可能会因不同的开发框架或库而有所不同。如果你需要更详细的信息,请提供更具体的背景或上下文。
阅读全文