`training_epoch_end`

时间: 2023-10-22 12:06:40 浏览: 24
`training_epoch_end` 是一个在训练过程中的每个 epoch 结束时被调用的函数。在训练神经网络时,通常会分为多个 epoch,每个 epoch 表示模型遍历整个训练数据集的一次。而 `training_epoch_end` 函数则用于对每个 epoch 进行一些后处理操作。 在 `training_epoch_end` 函数中,可以执行一些与模型训练相关的操作,例如计算并记录训练集和验证集上的指标,绘制训练曲线图等。这个函数可以提供有关每个 epoch 的一些统计信息,以便在训练过程中进行监控和可视化。 需要注意的是,`training_epoch_end` 函数是在每个 epoch 结束时被调用的,而不是在整个训练过程结束时被调用的。在这个函数中,你可以访问当前 epoch 的模型状态、损失值、准确率等信息,并根据需要进行自定义处理。 这只是对 `training_epoch_end` 的一个简要解释,具体的使用方法和实现细节可能会因不同的开发框架或库而有所不同。如果你需要更详细的信息,请提供更具体的背景或上下文。
相关问题

from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor class LossCallBack(LossMonitor): """ Monitor the loss in training. If the loss in NAN or INF terminating training. """ def __init__(self, has_trained_epoch=0, per_print_times=per_print_steps): super(LossCallBack, self).__init__() self.has_trained_epoch = has_trained_epoch self._per_print_times = per_print_times def step_end(self, run_context): cb_params = run_context.original_args() loss = cb_params.net_outputs if isinstance(loss, (tuple, list)): if isinstance(loss[0], ms.Tensor) and isinstance(loss[0].asnumpy(), np.ndarray): loss = loss[0] if isinstance(loss, ms.Tensor) and isinstance(loss.asnumpy(), np.ndarray): loss = np.mean(loss.asnumpy()) cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)): raise ValueError("epoch: {} step: {}. Invalid loss, terminating training.".format( cb_params.cur_epoch_num, cur_step_in_epoch)) if self._per_print_times != 0 and cb_params.cur_step_num % self._per_print_times == 0: # pylint: disable=line-too-long print("epoch: %s step: %s, loss is %s" % (cb_params.cur_epoch_num + int(self.has_trained_epoch), cur_step_in_epoch, loss), flush=True) time_cb = TimeMonitor(data_size=step_size) loss_cb = LossCallBack(has_trained_epoch=0) cb = [time_cb, loss_cb] ckpt_save_dir = cfg['output_dir'] device_target = context.get_context('device_target') if cfg['save_checkpoint']: config_ck = CheckpointConfig(save_checkpoint_steps=save_ckpt_num*step_size, keep_checkpoint_max=10) # config_ck = CheckpointConfig(save_checkpoint_steps=5*step_size, keep_checkpoint_max=10) ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck) cb += [ckpt_cb]

这段代码定义了一些回调函数,用于在训练过程中监控和保存模型。 首先,定义了一个名为LossCallBack的类,继承自LossMonitor回调类。它重写了step_end方法,在每个训练步骤结束时监控损失值。如果损失值为NaN或INF,将抛出ValueError以终止训练。如果_per_print_times参数不为0且当前步骤数是_per_print_times的倍数,将打印当前的训练损失值。 然后,创建了一个TimeMonitor回调实例和一个LossCallBack回调实例。TimeMonitor用于监控训练时间,LossCallBack用于监控训练损失值。 接着,创建了一个回调列表cb,并将time_cb和loss_cb添加到列表中。同时,获取配置文件中的ckpt_save_dir和device_target。 如果配置文件中的save_checkpoint为True,则创建一个CheckpointConfig实例config_ck,用于配置模型保存的参数(保存间隔、最大保存个数等)。然后,创建一个ModelCheckpoint回调实例ckpt_cb,并将其添加到回调列表cb中。 最后,返回回调列表cb,用于在训练过程中使用。

pytorch_lightning metric

### 回答1: PyTorch Lightning Metric 是 PyTorch Lightning 中用于评估模型性能的一种工具。Metric 可以用于监控训练过程中的指标,并在每个 epoch 结束时输出结果。PyTorch Lightning Metric 提供了多种内置的评估指标,如 accuracy、precision、recall、F1 等,并且可以自定义评估指标。 使用 PyTorch Lightning Metric 的基本步骤如下: 1. 定义 Metric 类,继承自 `pl.metrics.Metric` 2. 在类中实现 `update` 方法,用于更新评估指标 3. 在类中实现 `compute` 方法,用于计算最终的评估结果 4. 在 LightningModule 中使用 `self.log()` 方法输出评估结果 例如,下面是一个计算 accuracy 的 Metric 类的示例代码: ```python import torch import pytorch_lightning as pl class Accuracy(pl.metrics.Metric): def __init__(self, dist_sync_on_step=False): super().__init__(dist_sync_on_step=dist_sync_on_step) self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum") self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum") def update(self, preds, target): preds = torch.argmax(preds, dim=1) self.correct += torch.sum(preds == target) self.total += target.numel() def compute(self): return self.correct.float() / self.total ``` 在 LightningModule 中使用该 Metric 可以如下使用: ```python class MyModel(pl.LightningModule): def __init__(self): super().__init__() self.accuracy = Accuracy() def training_step(self, batch, batch_idx): ... self.accuracy(preds, target) ... def training_epoch_end(self, outputs): ... self.log('train_acc', self.accuracy.compute(), on_step=False, on_epoch=True) ... ``` 在每个 epoch 结束时,`self.accuracy.compute()` 方法将计算 accuracy 并返回最终的评估结果。`self.log()` 方法用于输出评估结果,其中 `on_epoch=True` 表示只在每个 epoch 结束时输出,而不是每个 batch 结束时都输出。 ### 回答2: PyTorch Lightning是一个轻量级而强大的深度学习框架,提供了许多指标(metric)来帮助我们评估模型的性能。这些指标可以帮助我们了解训练过程中模型的表现,从而对模型进行改进和优化。 PyTorch Lightning中的指标(metric)可以分为两类:训练指标和验证指标。训练指标是针对训练阶段的评估,而验证指标则是在验证阶段对模型进行评估。 常见的训练指标包括准确率(Accuracy)和损失(Loss)。准确率可以衡量模型在训练集上的分类预测准确性,而损失则可以衡量模型的学习效果。PyTorch Lightning提供了内置的函数来计算这些指标,使得评估过程更加方便。 此外,PyTorch Lightning还提供了丰富的验证指标。常见的验证指标包括精确度(Precision)、召回率(Recall)和F1-score。这些指标可以帮助我们更全面地了解模型在验证集上的性能表现。PyTorch Lightning也提供了内置的函数来计算这些指标。 对于更复杂的模型评估需求,PyTorch Lightning还可以自定义指标。我们可以通过继承`torchmetrics.Metric`类来定义自己的指标函数,并在训练或验证过程中使用这些指标。 总之,PyTorch Lightning提供了丰富的指标来帮助我们评估模型的性能。无论是训练指标还是验证指标,这些指标都能够帮助我们更好地了解模型的表现,并且能够进行自定义来满足特定的评估需求。 ### 回答3: PyTorch Lightning是一个针对PyTorch的轻量级深度学习框架,它提供了一种易于使用的方式来组织和管理训练代码。在PyTorch Lightning中,Metric(度量指标)是一个用于评估模型性能的重要组成部分。 PyTorch Lightning Metric的主要作用是衡量模型在训练和验证过程中的性能。它提供了一种标准化的方式来计算和跟踪诸如准确率、损失、F1分数等指标。使用Metric能够帮助我们更好地理解和衡量模型的表现。 PyTorch Lightning预定义了一些常见的Metric,如Accuracy、Precision、Recall、F1、Mean Squared Error等。使用这些预定义的Metric,我们只需简单地实例化并传递给Lightning Module,再通过训练循环使用update方法来更新Metric的值。例如,我们可以在每个训练批次和验证结束后计算Accuracy,并跟踪模型在训练过程中的性能。 此外,PyTorch Lightning还支持自定义Metric,我们可以根据实际需求定义自己的Metric函数。实现自定义Metric函数时,我们需要定义`__init__`方法、`update`方法和`compute`方法。`__init__`方法用于初始化Metric的变量,`update`方法用于根据模型预测结果和真实标签更新Metric的值,`compute`方法用于计算Metric最终的结果。 总结来说,PyTorch Lightning Metric是一种用于评估模型性能的工具,它提供了一种标准化的方式来计算和跟踪模型的性能指标。它可以帮助我们更好地理解和衡量模型的表现,并且可以方便地使用预定义的指标或自定义的指标来评估模型。

相关推荐

以下代码出现input depth must be evenly divisible by filter depth: 1 vs 3错误是为什么,代码应该怎么改import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.preprocessing.image import ImageDataGenerator from keras.applications.vgg16 import VGG16 import numpy # 加载FER2013数据集 with open('E:/BaiduNetdiskDownload/fer2013.csv') as f: content = f.readlines() lines = numpy.array(content) num_of_instances = lines.size print("Number of instances: ", num_of_instances) # 定义X和Y X_train, y_train, X_test, y_test = [], [], [], [] # 按行分割数据 for i in range(1, num_of_instances): try: emotion, img, usage = lines[i].split(",") val = img.split(" ") pixels = numpy.array(val, 'float32') emotion = np_utils.to_categorical(emotion, 7) if 'Training' in usage: X_train.append(pixels) y_train.append(emotion) elif 'PublicTest' in usage: X_test.append(pixels) y_test.append(emotion) finally: print("", end="") # 转换成numpy数组 X_train = numpy.array(X_train, 'float32') y_train = numpy.array(y_train, 'float32') X_test = numpy.array(X_test, 'float32') y_test = numpy.array(y_test, 'float32') # 数据预处理 X_train /= 255 X_test /= 255 X_train = X_train.reshape(X_train.shape[0], 48, 48, 1) X_test = X_test.reshape(X_test.shape[0], 48, 48, 1) # 定义VGG16模型 vgg16_model = VGG16(weights='imagenet', include_top=False, input_shape=(48, 48, 3)) # 微调模型 model = Sequential() model.add(vgg16_model) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(7, activation='softmax')) for layer in model.layers[:1]: layer.trainable = False # 定义优化器和损失函数 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) # 数据增强 datagen = ImageDataGenerator( featurewise_center=False, featurewise_std_normalization=False, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True) datagen.fit(X_train) # 训练模型 model.fit_generator(datagen.flow(X_train, y_train, batch_size=32), steps_per_epoch=len(X_train) / 32, epochs=10) # 评估模型 score = model.evaluate(X_test, y_test, batch_size=32) print("Test Loss:", score[0]) print("Test Accuracy:", score[1])

#LSTM #from tqdm import tqdm import os os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" import time #GRUmodel=GRU(feature_size,hidden_size,num_layers,output_size) #GRUmodel=GRUAttention(7,5,1,2).to(device) model=lstm(7,20,2,1).to(device) model.load_state_dict(torch.load("LSTMmodel1.pth",map_location=device))#pytorch 导入模型lstm(7,20,4,1).to(device) loss_function=nn.MSELoss() lr=[] start=time.time() start0 = time.time() optimizer=torch.optim.Adam(model.parameters(),lr=0.5) scheduler = ReduceLROnPlateau(optimizer, mode='min',factor=0.5,patience=50,cooldown=60,min_lr=0,verbose=False) #模型训练 trainloss=[] epochs=2000 best_loss=1e10 for epoch in range(epochs): model.train() running_loss=0 lr.append(optimizer.param_groups[0]["lr"]) #train_bar=tqdm(train_loader)#形成进度条 for i,data in enumerate(train_loader): x,y=data optimizer.zero_grad() y_train_pred=model(x) loss=loss_function(y_train_pred,y.reshape(-1,1)) loss.backward() optimizer.step() running_loss+=loss.item() trainloss.append(running_loss/len(train_loader)) scheduler.step(trainloss[-1]) #模型验证 model.eval() validation_loss=0 validationloss=[] with torch.no_grad(): #validation_bar=tqdm(validation_loader) for j,data in enumerate(validation_loader): x_validation,y_validation=data y_validation_pred=model(x_validation) validationrunloss=loss_function(y_validation_pred,y_validation.reshape(-1,1)) validation_loss+=validationrunloss #validation_bar.desc="loss:{:.4f}".format(validation_loss/len(validation_loader)) validation_loss=validation_loss/len(validation_loader) validationloss.append(validation_loss) end=time.time() print("learningrate:%.5f,epoch:[%5d/%5d]time:%.2fs, train_loss:%.5f,validation_loss:%.6f" % (lr[-1],epoch, epochs, (end - start),trainloss[-1],validationloss[-1])) start = time.time() if validationloss[-1]<best_loss: best_loss=validationloss[-1] torch.save(model.state_dict,"LSTMmodel1.pth") #torch.save(model.state_dict,"LSTMmodel.pth") end0 = time.time() print("the total training time is :%.2fmin" % ((end0 - start0) / 60)) 报错:Expected state_dict to be dict-like, got <class 'method'>.

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

软件工程每个学期的生活及学习目标

软件工程每个学期的生活及学习目标可能包括以下内容: 1. 学习软件开发的基本理论和实践知识,掌握常用的编程语言和开发工具。 2. 熟悉软件开发的流程和方法,了解软件工程的标准和规范。 3. 掌握软件需求分析、设计、开发、测试、部署和维护的技能,能够独立完成简单的软件开发任务。 4. 培养团队合作的能力,学会与他人进行有效的沟通和协作,共同完成软件开发项目。 5. 提高自己的计算机技术水平,了解最新的软件开发技术和趋势,积极参与开源社区和技术交流活动。 6. 注重学习方法和习惯的培养,养成良好的学习和生活习惯,保持健康的身心状态。 7. 积极参加校内外的实践活动和比赛,拓展自己的视
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩