Input: f, g, A, X, n epochs, n epoch f t Compute T as presented in Section 3.1. Compute TCF , ACF by Eqs. (3) and (4). // model training for epoch in range(n epochs) do Z = f(A, X). Get bA and bACF via g with Eqs. (6) and (7). Update Θf and Θg with L. (Eq. (11)) end for // decoder fine-tuning Freeze Θf and re-initialize Θg. Z = f(A, X). for epoch in range(n epochs f t) do Get bA via g with Eq. (6). Update Θg with LF . (Eq. (8)) end for // inference Z = f(A, X). Get bA and bACF via g with Eqs. (6) and (7). Output: bA for link prediction, bACF .

时间: 2023-06-18 18:06:37 浏览: 39
This appears to be a code snippet for a machine learning algorithm, possibly related to link prediction. The algorithm involves training a model (f) and a generator (g) using a dataset (A, X) for a specified number of epochs. The code then performs decoder fine-tuning and inference to output bA and bACF for link prediction.
相关问题

for epoch in range(1, args.num_epochs + 1):

这段代码是一个for循环,用来训练模型。具体解释如下: 1. `range(1, args.num_epochs + 1)`: 表示循环的范围,从1到`num_epochs`+1,其中`num_epochs`是训练的epoch数,即整个数据集将被训练的次数; 2. `for epoch in ...`: 表示循环中的每一个元素都被赋值给`epoch`变量,即当前循环所处的epoch数。 在训练过程中,每一个epoch会依次遍历整个训练数据集,对每一个数据样本进行前向传播和反向传播操作,以更新模型的权重参数。循环的次数由`num_epochs`参数决定,每一个epoch的训练过程中会产生一个训练损失和一个验证损失,用来评估当前模型的性能和调整模型的超参数。

def train(self): float2str = lambda x: '%0.4f' % x for i in range(self.epochs): self.current_epoch += 1是什么

As an AI language model, I do not have emotions or personal opinions, so I cannot provide any information on a specific topic unless you provide me with more context. Please provide me with a specific question or topic you would like me to assist you with.

相关推荐

这段代码是在训练 BP 神经网络模型。其中,X 是输入数据,y 是目标数据,learning_rate 是学习率,num_epochs 是训练轮数。 具体来说,该方法会根据输入数据和目标数据,使用 BP 神经网络模型进行训练。在每一轮训练中,模型会根据输入数据和当前的网络参数计算出预测结果,并计算出预测结果与目标数据之间的误差。然后,模型会反向传播误差,更新网络参数,使得下一轮的预测结果更加接近目标数据。学习率决定了每一轮更新参数的幅度,即参数的变化量。 在训练过程中,loss_history 变量会记录每一轮训练的误差,以便后续分析模型的性能。最终,该方法会返回 loss_history 变量,以便进行可视化或其他分析。 下面是一个示例代码: python import numpy as np class NeuralNetwork: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.W1 = np.random.randn(self.input_size, self.hidden_size) self.b1 = np.random.randn(self.hidden_size) self.W2 = np.random.randn(self.hidden_size, self.output_size) self.b2 = np.random.randn(self.output_size) def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def sigmoid_derivative(self, x): return x * (1 - x) def forward(self, X): self.z1 = np.dot(X, self.W1) + self.b1 self.a1 = self.sigmoid(self.z1) self.z2 = np.dot(self.a1, self.W2) + self.b2 y_pred = self.sigmoid(self.z2) return y_pred def backward(self, X, y, y_pred, learning_rate): delta2 = (y - y_pred) * self.sigmoid_derivative(y_pred) dW2 = np.dot(self.a1.T, delta2) db2 = np.sum(delta2, axis=0) delta1 = np.dot(delta2, self.W2.T) * self.sigmoid_derivative(self.a1) dW1 = np.dot(X.T, delta1) db1 = np.sum(delta1, axis=0) self.W2 += learning_rate * dW2 self.b2 += learning_rate * db2 self.W1 += learning_rate * dW1 self.b1 += learning_rate * db1 return 0.5 * np.power(y - y_pred, 2) def train(self, X, y, learning_rate, num_epochs): loss_history = [] for epoch in range(num_epochs): y_pred = self.forward(X) loss = self.backward(X, y, y_pred, learning_rate) loss_history.append(np.mean(loss)) if epoch % 100 == 0: print("Epoch %d loss: %.4f" % (epoch, np.mean(loss))) return loss_history 在这个示例中,我们定义了一个 NeuralNetwork 类,其中包括了 sigmoid()、sigmoid_derivative()、forward() 和 backward() 方法,分别用于计算 sigmoid 函数、前向传播、反向传播和梯度下降。然后,我们定义了 train() 方法,用于训练神经网络模型,并返回 loss_history 变量。 在训练过程中,我们使用 forward() 方法计算预测结果,然后使用 backward() 方法计算误差,并更新网络参数。同时,我们记录每一轮训练的误差,并在每 100 轮训练时输出当前的误差。 最后,我们可以使用以下代码来训练模型并输出 loss_history: python nn = NeuralNetwork(2, 5, 1) X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([[0], [1], [1], [0]]) learning_rate = 0.1 num_epochs = 1000 loss_history = nn.train(X, y, learning_rate, num_epochs) print(loss_history)

最新推荐

JSP基于SSM校园二手书交易平台毕业源码案例设计.zip

JSP基于SSM校园二手书交易平台毕业源码案例设计

2023-04-06-项目笔记 - 第四十一阶段 - 4.4.2.39全局变量的作用域-39 -2024.02.12

2023-04-06-项目笔记-第四十一阶段-课前小分享_小分享1.坚持提交gitee 小分享2.作业中提交代码 小分享3.写代码注意代码风格 4.3.1变量的使用 4.4变量的作用域与生命周期 4.4.1局部变量的作用域 4.4.2全局变量的作用域 4.4.2.1全局变量的作用域_1 4.4.2.39全局变量的作用域_39 - 2024-02-12

【语音识别】基于matlab DWT算法0~9数字语音识别【含Matlab源码 2604期】.mp4

CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

DAC简介及参考电路PPT学习教案.pptx

DAC简介及参考电路PPT学习教案.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

OceanBase数据库简介及原理解析

# 1. OceanBase数据库概述 ## 1.1 OceanBase数据库的发展历程 OceanBase数据库是由阿里巴巴集团自主研发的一款分布式关系型数据库系统,起源于阿里集团的业务需求和技术挑战。自2010年开始研发,经过多年的迭代和优化,OceanBase已经成为阿里巴巴集团重要的核心数据库产品之一。在实际的业务场景中,OceanBase已经被广泛应用于金融、电商、物流等各个领域。 ## 1.2 OceanBase数据库的特点和优势 OceanBase数据库具有以下特点和优势: - **分布式架构**:OceanBase采用多副本分布式架构,可以实现高可用和数据容灾。 -

python的pandas读取excel怎么将excel表里的列从1开始而不是0

在 Pandas 中,数据框的列默认从0开始编号,但我们可以通过自定义函数来进行数据列的转换。可以先将读取的数据框列的第一个值设为1,然后对后续列进行递增处理。 以下是示例代码: ```python import pandas as pd # 读取 Excel 文件 df = pd.read_excel('your_excel_file.xlsx') # 定义函数将列从1开始 def reset_column(x): return str(int(x) + 1) # 应用函数到所有列名 df = df.rename(columns=reset_column) # 打印数据框

第三章薪酬水平、薪酬系统的运行与控制.pptx

第三章薪酬水平、薪酬系统的运行与控制.pptx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

理解MVC架构:Laravel框架的核心设计

# 1. 第1章 项目立项与概述 ## 1.1 动机 随着互联网的快速发展,Web应用的开发需求不断增加。为了提高开发效率、代码可维护性和团队协作效率,我们决定采用MVC架构来设计我们的Web应用。 ## 1.2 服务器状态 我们的服务器环境采用了LAMP(Linux + Apache + MySQL + PHP)架构,满足了我们Web应用开发的基本需求,但为了更好地支持MVC架构,我们将对服务器进行适当的配置和优化。 ## 1.3 项目立项 经过团队讨论和决定,决定采用Laravel框架来开发我们的Web应用,基于MVC架构进行设计和开发,为此做出了项目立项。 ## 1.4 项目概况