def train(generator, discriminator, gan, X_train, latent_dim, epochs=90, batch_size=70, loss_d=None, loss_g=None): for epoch in range(epochs): # 生成随机噪声 noise = np.random.normal(0, 1, size=(batch_size, latent_dim)) # 生成器生成假数据 fake_X = generator.predict(noise) # 随机选择真实数据 idx = np.random.randint(0, X_train.shape[0], batch_size) real_X = X_train[idx] # 训练判别器 discriminator.trainable = True discriminator.train_on_batch(real_X, np.ones((batch_size, 1))) discriminator.train_on_batch(fake_X, np.zeros((batch_size, 1))) # 训练生成器 discriminator.trainable = False gan.train_on_batch(noise, np.ones((batch_size, 1))) # 每 10 个 epoch 打印一次损失 if epoch % 10 == 0: print('Epoch %d: loss_d=%.4f, loss_g=%.4f' % (epoch, loss_d, loss_g))
时间: 2024-04-29 08:19:34 浏览: 109
这段代码是一个简单的 GAN(生成对抗网络)的训练过程,包括生成器、判别器和整个 GAN 的训练。其中,生成器用随机噪声生成假数据,判别器用于判别真实数据和假数据的真伪,并对两种数据进行训练。整个 GAN 的训练过程则是先训练判别器,再固定判别器的参数,训练生成器,使生成的假数据更接近于真实数据。每 10 个 epoch 打印一次损失。
相关问题
def train_gan(generator, discriminator, gan, dataset, latent_dim, epochs): notes = get_notes() # 得到所有不重复的音调数目 num_pitch = len(set(notes)) network_input, network_output = prepare_sequences(notes, num_pitch) model = build_gan(network_input, num_pitch) # 输入,音符的数量,训练后的参数文件(训练的时候不用写) filepath = "03weights-{epoch:02d}-{loss:.4f}.hdf5" checkpoint = tf.keras.callbacks.ModelCheckpoint( filepath, # 保存参数文件的路径 monitor='loss', # 衡量的标准 verbose=0, # 不用冗余模式 save_best_only=True, # 最近出现的用monitor衡量的最好的参数不会被覆盖 mode='min' # 关注的是loss的最小值 ) for epoch in range(epochs): for real_images in dataset: # 训练判别器 noise = tf.random.normal((real_images.shape[0], latent_dim)) fake_images = generator(noise) with tf.GradientTape() as tape: real_pred = discriminator(real_images) fake_pred = discriminator(fake_images) real_loss = loss_fn(tf.ones_like(real_pred), real_pred) fake_loss = loss_fn(tf.zeros_like(fake_pred), fake_pred) discriminator_loss = real_loss + fake_loss gradients = tape.gradient(discriminator_loss, discriminator.trainable_weights) discriminator_optimizer.apply_gradients(zip(gradients, discriminator.trainable_weights)) # 训练生成器 noise = tf.random.normal((real_images.shape[0], latent_dim)) with tf.GradientTape() as tape: fake_images = generator(noise) fake_pred = discriminator(fake_images) generator_loss = loss_fn(tf.ones_like(fake_pred), fake_pred) gradients = tape.gradient(generator_loss, generator.trainable_weights) generator_optimizer.apply_gradients(zip(gradients, generator.trainable_weights)) gan.fit(network_input, np.ones((network_input.shape[0], 1)), epochs=100, batch_size=64) # 每 10 个 epoch 打印一次损失函数值 if (epoch + 1) % 10 == 0: print("Epoch:", epoch + 1, "Generator Loss:", generator_loss.numpy(), "Discriminator Loss:", discriminator_loss.numpy())
这段代码看起来是一个 GAN 模型的训练过程。其中 generator 和 discriminator 分别是生成器和判别器,gan 是整个 GAN 模型,dataset 是训练数据,latent_dim 是生成器的输入维度,epochs 是训练的轮数。在训练过程中,首先准备训练数据并构建 GAN 模型,然后进行每轮训练。在每轮训练中,首先训练判别器,然后训练生成器,并使用生成器生成一些数据,然后计算生成器和判别器的损失,最后更新参数。在训练结束后,使用 GAN 模型生成新的数据。
def train(notes, chords, generator, discriminator, gan, loss_fn, generator_optimizer, discriminator_optimizer): num_batches = notes.shape[0] // BATCH_SIZE for epoch in range(NUM_EPOCHS): for batch in range(num_batches): # 训练判别器 for _ in range(1): # 生成随机的噪声 noise = np.random.normal(0, 1, size=(BATCH_SIZE, LATENT_DIM)) # 随机选择一个真实的样本 idx = np.random.randint(0, notes.shape[0], size=BATCH_SIZE) real_notes, real_chords = notes[idx], chords[idx] # 生成假的样本 fake_notes = generator(noise) # 计算判别器的损失函数 real_loss = loss_fn(tf.ones((BATCH_SIZE, 1)), discriminator([real_notes, real_chords])) fake_loss = loss_fn(tf.zeros((BATCH_SIZE, 1)), discriminator([fake_notes, chords])) total_loss = real_loss + fake_loss # 计算判别器的梯度并更新参数 grads = tf.gradients(total_loss, discriminator.trainable_variables) discriminator_optimizer.apply_gradients(zip(grads, discriminator.trainable_variables))) # 训练生成器 for _ in range(1): # 生成随机的噪声 noise = np.random.normal(0, 1, size=(BATCH_SIZE, LATENT_DIM)) # 计算生成器的损失函数 fake_notes = generator(noise) fake_loss = loss_fn(tf.ones((BATCH_SIZE, 1)), discriminator([fake_notes, chords])) # 计算生成器的梯度并更新参数 grads = tf.gradients(fake_loss, generator.trainable_variables) generator_optimizer.apply_gradients(zip(grads, generator.trainable_variables))) # 打印损失函数和精度 print('Epoch {}, Batch {}/{}: Loss={:.4f}'.format(epoch+1, batch+1, num_batches, total_loss)) # 保存模型 if (epoch+1) % 10 == 0: generator.save('generator.h5') discriminator.save('discriminator.h5') gan.save('gan.h5')
这段代码实现了一个基于GAN的音乐生成模型的训练过程。主要流程如下:
1. 根据每个epoch的训练次数(NUM_EPOCHS)和每个batch的大小(BATCH_SIZE),计算出总共需要训练的batch数(num_batches)。
2. 对于每个epoch和每个batch:
a. 从训练数据集(notes和chords)中随机选择BATCH_SIZE个样本(real_notes和real_chords)作为真实样本,同时生成BATCH_SIZE个随机噪声(noise)作为假样本。
b. 训练判别器(discriminator):对于每个样本,计算其对应的损失函数(real_loss或fake_loss),并将它们相加得到判别器的总损失(total_loss)。然后计算判别器的梯度(grads),并使用判别器优化器(discriminator_optimizer)来更新判别器的参数(discriminator.trainable_variables)。
c. 训练生成器(generator):对于每个生成的假样本,计算其对应的损失函数(fake_loss),并计算生成器的梯度(grads),使用生成器优化器(generator_optimizer)来更新生成器的参数(generator.trainable_variables)。
d. 打印当前训练的epoch、batch和总损失(total_loss)。
e. 如果当前epoch是10的倍数,保存生成器模型(generator.h5)、判别器模型(discriminator.h5)和GAN模型(gan.h5)。
这个模型是一个有监督的生成模型,输入是随机噪声和和弦(chords),输出是钢琴音符(notes)。其中,判别器的作用是判断输入的钢琴音符是否是真实的,生成器的作用是将随机噪声和和弦转换为更真实的钢琴音符。GAN则是将判别器和生成器相结合,使得生成器能够生成更真实的钢琴音符,同时让判别器更好地判断真假。
阅读全文