def train(generator, discriminator, combined, network_input, network_output): epochs = 100 batch_size = 128 half_batch = int(batch_size / 2) filepath = "03weights-{epoch:02d}-{loss:.4f}.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='val_loss', save_best_only=True) for epoch in range(epochs): # 训练判别器 idx = np.random.randint(0, network_input.shape[0], half_batch) real_input = network_input[idx] real_output = network_output[idx] fake_output = generator.predict(np.random.rand(half_batch, 100, 1)) d_loss_real = discriminator.train_on_batch(real_input, real_output) d_loss_fake = discriminator.train_on_batch(fake_output, np.zeros((half_batch, 1))) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # 训练生成器 idx = np.random.randint(0, network_input.shape[0], batch_size) real_input = network_input[idx] real_output = network_output[idx] g_loss = combined.train_on_batch(real_input, real_output) # 输出训练结果 print('Epoch %d/%d: D loss: %f, G loss: %f' % (epoch + 1, epochs, d_loss, g_loss)) # 调用回调函数,保存模型参数 checkpoint.on_epoch_end(epoch, logs={'d_loss': d_loss, 'g_loss': g_loss})
时间: 2024-03-11 08:45:39 浏览: 142
这是一个用于训练生成对抗网络(GAN)的函数。其中使用了一个生成器(generator)、一个判别器(discriminator)和一个组合网络(combined)。GAN 由生成器和判别器两个网络组成,生成器用于生成与真实数据相似的假数据,判别器用于判断输入数据是真实数据还是生成器生成的假数据。在训练过程中,生成器和判别器交替训练,生成器的目标是尽可能骗过判别器,而判别器的目标是尽可能准确地判断数据的真假。这个函数的训练过程中,先对判别器进行训练,然后对生成器进行训练,每个 epoch 结束后保存模型参数。
相关问题
def train_gan(generator, discriminator, gan, dataset, latent_dim, epochs): notes = get_notes() # 得到所有不重复的音调数目 num_pitch = len(set(notes)) network_input, network_output = prepare_sequences(notes, num_pitch) model = build_gan(network_input, num_pitch) # 输入,音符的数量,训练后的参数文件(训练的时候不用写) filepath = "03weights-{epoch:02d}-{loss:.4f}.hdf5" checkpoint = tf.keras.callbacks.ModelCheckpoint( filepath, # 保存参数文件的路径 monitor='loss', # 衡量的标准 verbose=0, # 不用冗余模式 save_best_only=True, # 最近出现的用monitor衡量的最好的参数不会被覆盖 mode='min' # 关注的是loss的最小值 ) for epoch in range(epochs): for real_images in dataset: # 训练判别器 noise = tf.random.normal((real_images.shape[0], latent_dim)) fake_images = generator(noise) with tf.GradientTape() as tape: real_pred = discriminator(real_images) fake_pred = discriminator(fake_images) real_loss = loss_fn(tf.ones_like(real_pred), real_pred) fake_loss = loss_fn(tf.zeros_like(fake_pred), fake_pred) discriminator_loss = real_loss + fake_loss gradients = tape.gradient(discriminator_loss, discriminator.trainable_weights) discriminator_optimizer.apply_gradients(zip(gradients, discriminator.trainable_weights)) # 训练生成器 noise = tf.random.normal((real_images.shape[0], latent_dim)) with tf.GradientTape() as tape: fake_images = generator(noise) fake_pred = discriminator(fake_images) generator_loss = loss_fn(tf.ones_like(fake_pred), fake_pred) gradients = tape.gradient(generator_loss, generator.trainable_weights) generator_optimizer.apply_gradients(zip(gradients, generator.trainable_weights)) gan.fit(network_input, np.ones((network_input.shape[0], 1)), epochs=100, batch_size=64) # 每 10 个 epoch 打印一次损失函数值 if (epoch + 1) % 10 == 0: print("Epoch:", epoch + 1, "Generator Loss:", generator_loss.numpy(), "Discriminator Loss:", discriminator_loss.numpy())
这段代码看起来是一个 GAN 模型的训练过程。其中 generator 和 discriminator 分别是生成器和判别器,gan 是整个 GAN 模型,dataset 是训练数据,latent_dim 是生成器的输入维度,epochs 是训练的轮数。在训练过程中,首先准备训练数据并构建 GAN 模型,然后进行每轮训练。在每轮训练中,首先训练判别器,然后训练生成器,并使用生成器生成一些数据,然后计算生成器和判别器的损失,最后更新参数。在训练结束后,使用 GAN 模型生成新的数据。
def train(generator, discriminator, gan, X_train, latent_dim, epochs=90, batch_size=70, loss_d=None, loss_g=None): for epoch in range(epochs): # 生成随机噪声 noise = np.random.normal(0, 1, size=(batch_size, latent_dim)) # 生成器生成假数据 fake_X = generator.predict(noise) # 随机选择真实数据 idx = np.random.randint(0, X_train.shape[0], batch_size) real_X = X_train[idx] # 训练判别器 discriminator.trainable = True discriminator.train_on_batch(real_X, np.ones((batch_size, 1))) discriminator.train_on_batch(fake_X, np.zeros((batch_size, 1))) # 训练生成器 discriminator.trainable = False gan.train_on_batch(noise, np.ones((batch_size, 1))) # 每 10 个 epoch 打印一次损失 if epoch % 10 == 0: print('Epoch %d: loss_d=%.4f, loss_g=%.4f' % (epoch, loss_d, loss_g))
这段代码是一个简单的 GAN(生成对抗网络)的训练过程,包括生成器、判别器和整个 GAN 的训练。其中,生成器用随机噪声生成假数据,判别器用于判别真实数据和假数据的真伪,并对两种数据进行训练。整个 GAN 的训练过程则是先训练判别器,再固定判别器的参数,训练生成器,使生成的假数据更接近于真实数据。每 10 个 epoch 打印一次损失。
阅读全文