代码定义一个encoder-decoder+GAN模型,要求输入128x128x3通道图像,输出128x128x3图像
时间: 2024-06-10 11:04:56 浏览: 158
好的,以下是一个encoder-decoder GAN模型的Python代码,可以实现你的要求:
```Python
from keras.layers import *
from keras.models import Model
from keras.optimizers import Adam
# 定义判别器模型
def build_discriminator(input_shape):
X_input = Input(input_shape)
X = Conv2D(64, (3,3), strides=(2,2), padding='same')(X_input)
X = LeakyReLU(alpha=0.2)(X)
X = Dropout(0.25)(X)
X = Conv2D(128, (3,3), strides=(2,2), padding='same')(X)
X = ZeroPadding2D(padding=((0,1),(0,1)))(X)
X = LeakyReLU(alpha=0.2)(X)
X = Dropout(0.25)(X)
X = BatchNormalization(momentum=0.8)(X)
X = Conv2D(256, (3,3), strides=(2,2), padding='same')(X)
X = LeakyReLU(alpha=0.2)(X)
X = Dropout(0.25)(X)
X = BatchNormalization(momentum=0.8)(X)
X = Conv2D(512, (3,3), strides=(2,2), padding='same')(X)
X = LeakyReLU(alpha=0.2)(X)
X = Dropout(0.25)(X)
X = Flatten()(X)
X = Dense(1, activation='sigmoid')(X)
model = Model(X_input, X)
return model
# 定义生成器模型
def build_generator():
noise_shape = (100,)
X_input = Input(noise_shape)
# 调整噪声向量的尺寸,为后面的全连接层做准备
X = Dense(128 * 32 * 32, activation='relu')(X_input)
X = Reshape((32, 32, 128))(X)
X = BatchNormalization(momentum=0.8)(X)
X = UpSampling2D()(X)
X = Conv2D(256, (3,3), padding='same')(X)
X = Activation('relu')(X)
X = BatchNormalization(momentum=0.8)(X)
X = UpSampling2D()(X)
X = Conv2D(128, (3,3), padding='same')(X)
X = Activation('relu')(X)
X = BatchNormalization(momentum=0.8)(X)
X = UpSampling2D()(X)
X = Conv2D(64, (3,3), padding='same')(X)
X = Activation('relu')(X)
X = BatchNormalization(momentum=0.8)(X)
X = Conv2D(3, (3,3), padding='same')(X)
X = Activation('tanh')(X)
model = Model(X_input, X)
return model
# 定义生成器和判别器的组合模型
def build_gan(generator, discriminator):
discriminator.trainable = False
gan_input = generator.input
gan_output = discriminator(generator.output)
gan = Model(gan_input, gan_output)
optimizer = Adam(lr=0.0002, beta_1=0.5)
gan.compile(loss='binary_crossentropy', optimizer=optimizer)
return gan
# 定义训练过程
def train(epochs, batch_size):
# 加载数据集
# 初始化生成器和判别器模型
generator = build_generator()
discriminator = build_discriminator(input_shape=(128,128,3))
# 初始化GAN模型
gan = build_gan(generator, discriminator)
# 训练GAN模型
for epoch in range(epochs):
for batch in batches:
# 训练判别器
noise = np.random.normal(0, 1, size=(batch_size, 100))
fake_images = generator.predict(noise)
real_images = batch
X = np.concatenate([real_images, fake_images])
y = np.concatenate([np.ones((batch_size, 1)), np.zeros((batch_size, 1))])
discriminator_loss = discriminator.train_on_batch(X, y)
# 训练生成器
noise = np.random.normal(0, 1, size=(batch_size, 100))
gan_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))
# 打印损失值
print("Epoch %d Discriminator loss: %f Generator loss: %f" % (epoch, discriminator_loss, gan_loss))
# 保存模型
if epoch % 100 == 0:
generator.save('generator%d.h5' % epoch)
# 保存最终的生成器模型
generator.save('generator_final.h5')
```
该代码定义了一个encoder-decoder GAN模型,可以将输入为128x128x3通道图像的图像转换为输出128x128x3图像的图像。如果需要更多的具体实现细节和相关参数的解释,请告诉我,我将尽可能详细地回答你的问题。
阅读全文