Class-Balanced focal loss代码实现
时间: 2023-11-27 10:47:06 浏览: 93
以下一个简单的代码实现,用于计算类别平衡的focal loss:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ClassBalancedFocalLoss(nn.Module):
def __init__(self, gamma=2, alpha=None, size_average=True):
super(ClassBalancedFocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
if self.alpha is None:
self.alpha = torch.ones(1, requires_grad=True)
self.size_average = size_average
def forward(self, inputs, targets):
# 计算分类损失
ce_loss = F.cross_entropy(inputs, targets, reduction='none')
pt = torch.exp(-ce_loss)
# 计算类别平衡权重
class_weights = self.alpha / (torch.sum(self.alpha) + 1e-10)
weights = torch.pow(1 - pt, self.gamma) * class_weights
# 计算最终的focal loss
balanced_focal_loss = ce_loss * weights
if self.size_average:
balanced_focal_loss = torch.mean(balanced_focal_loss)
return balanced_focal_loss
```
这里的`gamma`是focal loss中的调节因子,`alpha`是每个类别的权重,如果不提供`alpha`,则默认所有类别的权重相等。`inputs`是模型的输出,`targets`是真实的类别标签。
你可以根据需要将其用于你的训练过程中,例如:
```python
loss_criterion = ClassBalancedFocalLoss(gamma=2, alpha=None)
outputs = model(inputs)
loss = loss_criterion(outputs, targets)
```
请注意,这只是一个简单的实现,实际应用中可能需要根据具体情况进行修改和调整。
阅读全文