from sklearn.model selection import train _test_split
时间: 2023-11-30 19:42:35 浏览: 250
`from sklearn.model_selection import train_test_split`是一个用于将数据集分成训练集和测试集的函数。该函数可以将一个或多个数组作为输入,并根据指定的测试集大小或训练集大小将其拆分为两个不同的集合。以下是一个使用train_test_split函数的例子:
```python
from sklearn.model_selection import train_test_split
import numpy as np
# 创建一个包含10个元素的数组
X = np.arange(10).reshape((5, 2))
y = range(5)
# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 输出拆分后的结果
print("X_train:\n", X_train)
print("X_test:\n", X_test)
print("y_train:\n", y_train)
print("y_test:\n", y_test)
```
该代码将一个包含10个元素的数组拆分为训练集和测试集,其中测试集大小为30%。输出结果将显示拆分后的训练集和测试集。
相关问题
from sklearn.datasets import ? from sklearn.model selection import train_test_split from sklearn.neural network import MLPClassifier import numpy as np digits = load_digits() X=digits.data y=digits.target X train X test,y_train,y_test = ? (X,y,random_state=0) mip = ? (solver ='lbfgs',hidden_layer_sizes=[100,100],activation='relu',random_state=62) mlp.fit(X_train,y_train) print(X_train.shape,y_train.shape,X_test.shape,y_test.shape) print("训练得分: {:.2f}".format(mlp.score(X_train.y_train))) print("测试得分: {:.2f}".format(mlp.score(X_test y_test)))
这段代码存在一些问题,可能会导致运行错误,我来帮你修改一下:
```
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
import numpy as np
digits = load_digits()
X = digits.data
y = digits.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
mlp = MLPClassifier(solver ='lbfgs', hidden_layer_sizes=[100,100], activation='relu', random_state=62)
mlp.fit(X_train, y_train)
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)
print("训练得分: {:.2f}".format(mlp.score(X_train, y_train)))
print("测试得分: {:.2f}".format(mlp.score(X_test, y_test)))
```
修改了以下几个地方:
1. `load_digits` 的拼写错误
2. `train_test_split` 的调用方式错误,应该为 `train_test_split(X, y, random_state=0)`
3. `MLPClassifier` 的调用方式错误,应该为 `MLPClassifier(solver='lbfgs', hidden_layer_sizes=[100,100], activation='relu', random_state=62)`
4. 打印得分时,应该为 `mlp.score(X_train, y_train)` 和 `mlp.score(X_test, y_test)`
from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn.model_selection import ShuffleSplit from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report
这是一段用于导入一些常见的机器学习相关的库和模块的代码。它导入了`StandardScaler`用于数据标准化,`PCA`用于数据降维,`train_test_split`用于数据集划分,`ShuffleSplit`用于交叉验证,`confusion_matrix`用于混淆矩阵计算,`classification_report`用于分类报告生成。这些库和模块都是来自于scikit-learn(sklearn)这个Python机器学习库。你有关这段代码的其他问题吗?
阅读全文