close(socket_fd)

时间: 2024-08-12 13:08:04 浏览: 32
`close(socket_fd)` 是用于关闭套接字文件描述符(socket_fd)的操作。在Python中,如果你使用socket库创建了一个网络连接或服务器监听,`socket_fd` 是代表该连接的文件描述符。调用 `close()` 函数后,套接字将不再接收或发送数据,并且连接会被终止。 下面是一个简单的例子: ```python import socket # 创建一个socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # 假设已经连接到服务器 server_address = ('localhost', 10000) sock.connect(server_address) # 连接后,可以使用close()关闭套接字 sock.close() ``` 在这个示例中,`sock.close()` 关闭了与服务器的连接。注意,如果你不手动关闭套接字,操作系统通常会在进程结束时自动关闭它,但在资源管理上还是推荐尽早关闭。
相关问题

修改client.c: #include<stdio.h> #include<stdlib.h> #include<string.h> #include<errno.h> #include<sys/types.h> #include<sys/socket.h> #include<netinet/in.h> int main() { int ret = 0; int socket_fd; char buffer[100]="你好,我是xxx!"; struct sockaddr_in server_add; socket_fd = socket(AF_INET, SOCK_STREAM, 0); if(-1 == socket_fd) { printf("socket fail ! \r\n"); return -1; } bzero(&server_add,sizeof(struct sockaddr_in)); server_add.sin_family=AF_INET; server_add.sin_addr.s_addr= inet_addr("192.168.1.2"); server_add.sin_port=htons(8888); if(-1 == connect(socket_fd,(struct sockaddr *)(&server_add), sizeof(struct sockaddr))) { printf("connect fail !\r\n"); return -1; } ret = write(socket_fd, buffer, strlen(buffer)); if(-1 == ret ) {     printf("write fail!\r\n");     return -1; } close(socket_fd); return 0; }server.c: #include<stdio.h> #include<stdlib.h> #include<string.h> #include<errno.h> #include<sys/types.h> #include<sys/socket.h> #include<netinet/in.h> int main() { int ret = 0; int socket_fd, new_socket_fd; struct sockaddr_in server_add,client_add; int add_len; char recv_buff[100]={0}; char send_buff[100]="朕xxx知道了!"; socket_fd = socket(AF_INET, SOCK_STREAM, 0); if(-1 == socket_fd) { printf("socket fail ! \r\n"); return -1; } bzero(&server_add,sizeof(struct sockaddr_in)); server_add.sin_family=AF_INET; server_add.sin_addr.s_addr=htonl(INADDR_ANY); server_add.sin_port=htons(8888); if(-1 == bind(socket_fd,(struct sockaddr *)(&server_add), sizeof(struct sockaddr))) { printf("bind fail !\r\n"); return -1; } if(-1 == listen(socket_fd,5)) { printf("listen fail !\r\n"); return -1; } while(1) { new_socket_fd = accept(socket_fd, (struct sockaddr *)(&client_add), &add_len); if(-1 == new_socket_fd) { printf("accept fail !\r\n"); return -1; } ret = read(new_socket_fd, recv_buff,100); if(-1 == ret) { printf("read data fail !\r\n"); return -1; } printf("Now we get:%s from client!\n", recv_buff); ret = write(socket_fd, send_buff, strlen(send_buff)); if(-1 == ret ) {     printf("write fail!\r\n");     return -1; } close(new_socket_fd); } close(socket_fd); return 0; }修改服务器和客户端,使朕知道了正常输出

修改后的client.c: ``` #include<stdio.h> #include<stdlib.h> #include<string.h> #include<errno.h> #include<sys/types.h> #include<sys/socket.h> #include<netinet/in.h> int main() { int ret = 0; int socket_fd; char buffer[100]="你好,我是xxx!"; struct sockaddr_in server_add; socket_fd = socket(AF_INET, SOCK_STREAM, 0); if(-1 == socket_fd) { printf("socket fail ! \r\n"); return -1; } bzero(&server_add,sizeof(struct sockaddr_in)); server_add.sin_family=AF_INET; server_add.sin_addr.s_addr= inet_addr("192.168.1.2"); server_add.sin_port=htons(8888); if(-1 == connect(socket_fd,(struct sockaddr *)(&server_add), sizeof(struct sockaddr))) { printf("connect fail !\r\n"); return -1; } ret = write(socket_fd, buffer, strlen(buffer)); if(-1 == ret ) { printf("write fail!\r\n"); return -1; } ret = read(socket_fd, buffer,100); if(-1 == ret) { printf("read data fail !\r\n"); return -1; } printf("Now we get:%s from server!\n", buffer); close(socket_fd); return 0; } ``` 修改后的server.c: ``` #include<stdio.h> #include<stdlib.h> #include<string.h> #include<errno.h> #include<sys/types.h> #include<sys/socket.h> #include<netinet/in.h> int main() { int ret = 0; int socket_fd, new_socket_fd; struct sockaddr_in server_add,client_add; int add_len; char recv_buff[100]={0}; char send_buff[100]="朕xxx知道了!"; socket_fd = socket(AF_INET, SOCK_STREAM, 0); if(-1 == socket_fd) { printf("socket fail ! \r\n"); return -1; } bzero(&server_add,sizeof(struct sockaddr_in)); server_add.sin_family=AF_INET; server_add.sin_addr.s_addr=htonl(INADDR_ANY); server_add.sin_port=htons(8888); if(-1 == bind(socket_fd,(struct sockaddr *)(&server_add), sizeof(struct sockaddr))) { printf("bind fail !\r\n"); return -1; } if(-1 == listen(socket_fd,5)) { printf("listen fail !\r\n"); return -1; } while(1) { new_socket_fd = accept(socket_fd, (struct sockaddr *)(&client_add), &add_len); if(-1 == new_socket_fd) { printf("accept fail !\r\n"); return -1; } ret = read(new_socket_fd, recv_buff,100); if(-1 == ret) { printf("read data fail !\r\n"); return -1; } printf("Now we get:%s from client!\n", recv_buff); ret = write(new_socket_fd, send_buff, strlen(send_buff)); if(-1 == ret ) { printf("write fail!\r\n"); return -1; } close(new_socket_fd); } close(socket_fd); return 0; } ``` 在客户端发送消息后,服务器会返回“朕xxx知道了!”,客户端会输出“Now we get:朕xxx知道了! from server!”。

翻译这段代码并在每一行后进行注释int ret,listen_fd, client_fd; struct sockaddr_in server_addr, client_addr; socklen_t slen, clen = sizeof(client_addr); char recvBuffer[128] = {0}; char recCmd[128] = {0}; const int on = 1; listen_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if(listen_fd < 0) { printf("server socket failed\n"); exit(1); } server_addr.sin_family = AF_INET; server_addr.sin_port = htons(SERVERPT); server_addr.sin_addr.s_addr = htons(INADDR_ANY); slen = sizeof(server_addr); //绑定网络设备 setsockopt(listen_fd,SOL_SOCKET,SO_REUSEADDR,&on,sizeof(on)); ret = bind(listen_fd, (struct sockaddr *)&server_addr, slen); if(ret < 0) { printf("listen_fd bind failed\n"); exit(1); } ret = listen(listen_fd, 8); if(ret < 0) { printf("server listen failed\n"); exit(2); } //开始侦听客户端的连接请求 printf("Waiting connect.....\n"); client_fd = accept(listen_fd, (struct sockaddr *)&client_addr, (socklen_t *)&clen); if(client_fd < 0) { printf("server accept failed\n"); exit(3); } //连接成功,打印客户端的网卡信息 printf("client port: %d ,", ntohs(client_addr.sin_port)); printf("client ip: %s\n",inet_ntoa(client_addr.sin_addr)); while(1) { printf("Waiting recv.....\n"); ret = read(client_fd, recvBuffer, 128); if(ret < 0) printf("read failed\n"); else if(ret == 0) { //客户端下线 close(client_fd); break; } else { //打印接收到客户端信息 printf("client data: %s\n", recvBuffer); //给客户端回发信息 write(client_fd, "Successfully received your message!", 128); } }

/* 定义三个变量:ret, listen_fd, client_fd */ int ret, listen_fd, client_fd; /* 定义两个结构体变量:server_addr, client_addr */ struct sockaddr_in server_addr, client_addr; /* 定义两个变量:slen, clen,slen记录server_addr的大小,clen记录client_addr的大小 */ socklen_t slen, clen = sizeof(client_addr); /* 定义两个字符数组:recvBuffer、recCmd,长度都为128,初始化为0 */ char recvBuffer[128] = {0}; char recCmd[128] = {0}; /* 定义一个常量on为1,表示开启相关选项 */ const int on = 1; /* 创建一个TCP协议的套接字,返回一个文件描述符 */ listen_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); /* 如果listen_fd小于0,表示创建套接字失败,输出提示信息并结束程序 */ if(listen_fd < 0) { printf("server socket failed\n"); exit(1); } /* 设置server_addr结构体的属性 */ server_addr.sin_family = AF_INET; //地址族为IPv4 server_addr.sin_port = htons(SERVERPT); //端口号,需要用htons转换为网络字节序 server_addr.sin_addr.s_addr = htons(INADDR_ANY); //IP地址,使用INADDR_ANY表示本机任意IP地址 slen = sizeof(server_addr); //记录server_addr结构体的大小 /* 设置socket选项,允许地址重用 */ setsockopt(listen_fd,SOL_SOCKET,SO_REUSEADDR,&on,sizeof(on)); /* 绑定网络设备和端口,将socket与server_addr绑定 */ ret = bind(listen_fd, (struct sockaddr *)&server_addr, slen); /* 如果绑定失败,输出提示信息并结束程序 */ if(ret < 0) { printf("listen_fd bind failed\n"); exit(1); } /* 开始侦听客户端的连接请求,最多连接8个客户端 */ ret = listen(listen_fd, 8); /* 如果侦听失败,输出提示信息并结束程序 */ if(ret < 0) { printf("server listen failed\n"); exit(2); } /* 输出等待客户端连接的提示信息 */ printf("Waiting connect.....\n"); /* 接受客户端连接请求,返回一个文件描述符 */ client_fd = accept(listen_fd, (struct sockaddr *)&client_addr, (socklen_t *)&clen); /* 如果接受请求失败,输出提示信息并结束程序 */ if(client_fd < 0) { printf("server accept failed\n"); exit(3); } /* 连接成功,打印客户端的网卡信息 */ printf("client port: %d ,", ntohs(client_addr.sin_port)); printf("client ip: %s\n",inet_ntoa(client_addr.sin_addr)); /* 进入循环,不断接收客户端发送的消息并回复 */ while(1) { /* 输出等待接收数据的提示信息 */ printf("Waiting recv.....\n"); /* 读取客户端发送的数据,返回读取到的字节数 */ ret = read(client_fd, recvBuffer, 128); /* 如果读取失败,输出提示信息 */ if(ret < 0) printf("read failed\n"); /* 如果读取到的字节数为0,表示客户端已下线,关闭连接并跳出循环 */ else if(ret == 0) { close(client_fd); break; } /* 如果读取到了数据,打印接收到的消息,并回复客户端 */ else { printf("client data: %s\n", recvBuffer); write(client_fd, "Successfully received your message!", 128); } }

相关推荐

int server_socket_init(){ int server_sockfd; struct sockaddr_in server_address; server_sockfd = socket(AF_INET, SOCK_STREAM, 0);//建立服务器端socket if(server_sockfd < 0 ) return -1; bzero(&server_address,sizeof(server_address)); server_address.sin_family = AF_INET; //server_address.sin_addr.s_addr = htonl(INADDR_ANY); //本机 server_address.sin_addr.s_addr = inet_addr(SERVER_IP); server_address.sin_port = htons(SERVER_PORT); if(bind(server_sockfd, (struct sockaddr *)&server_address,sizeof(server_address)) < 0 ) { close(server_sockfd); return -1; } if(listen(server_sockfd, 5) < 0) { close(server_sockfd); return -1; } return server_sockfd; } int server_Listening(int server_sockfd) { struct sockaddr_in client_address; int client_sockfd, ret = 0; int select_result,fd,client_len,data_size; struct timeval timeout; fd_set readfds, testfds; FD_ZERO(&readfds); FD_SET(server_sockfd, &readfds); while(1) { //每一轮监听后结构体被清0,每监听完一轮就要对结构体重新赋值,指定监听对象 testfds = readfds; timeout.tv_sec = 2; timeout.tv_usec = 500000; select_result = select(FD_SETSIZE, &testfds,NULL,NULL,NULL); if (select_result < 0) { return -1; } //perr_exit("select error"); for(fd = 0; fd < FD_SETSIZE; fd++) /*扫描所有的socket(文件)描述符*/ { if(FD_ISSET(fd,&testfds))/*找到可以读写相关socket(文件)描述符*/ { if(fd == server_sockfd) //为服务器socket,是则表示为客户请求连接。 { client_len = sizeof(client_address); client_sockfd = accept(server_sockfd,(struct sockaddr *)&client_address,&client_len); if(client_sockfd < 0) return -1; FD_SET(client_sockfd, &readfds);//将客户端socket加入到集合中 } else //客户端socket中有数据请求时 { ioctl(fd, FIONREAD, &data_size);//nread得到fd缓冲区的大小,就是当client写入缓冲区,这操作是读取缓冲区的大小 // n=read(fd,buf,sizeof(buf));//n即和nread一致 /*客户数据请求完毕,关闭套接字,从集合中清除相应描述符 */ if(data_size == 0) { //test FASTCGI_LOG("\n client_close_remore :%d\n\n\n\n",fd); close(fd); FD_CLR(fd, &readfds); } else if(!PerformServerTransfer(fd)){ return -1; } } } } } }这个是tcp server端有误么

最新推荐

recommend-type

如何在C语言中判断socket是否已经断开

在WINDOWS下,可以使用FD_CLOSE事件判断SOCKET是否已经断开。我们可以使用WSACreateEvent()函数创建一个事件句柄,然后使用WSAEventSelect()函数将该事件句柄与socket关联,最后使用WaitForSingleObject()函数等待...
recommend-type

浅谈socket TCP编程中connect的一些坑

要重置fd的状态,可以调用`close`函数关闭连接,然后重新初始化socket并再次调用`connect`。注意,关闭一个socket并不会立即释放其资源,而是将其放入TIME_WAIT状态,等待一段时间后才会彻底关闭。如果需要立即复用...
recommend-type

C++标准程序库:权威指南

"《C++标准程式库》是一本关于C++标准程式库的经典书籍,由Nicolai M. Josuttis撰写,并由侯捷和孟岩翻译。这本书是C++程序员的自学教材和参考工具,详细介绍了C++ Standard Library的各种组件和功能。" 在C++编程中,标准程式库(C++ Standard Library)是一个至关重要的部分,它提供了一系列预先定义的类和函数,使开发者能够高效地编写代码。C++标准程式库包含了大量模板类和函数,如容器(containers)、迭代器(iterators)、算法(algorithms)和函数对象(function objects),以及I/O流(I/O streams)和异常处理等。 1. 容器(Containers): - 标准模板库中的容器包括向量(vector)、列表(list)、映射(map)、集合(set)、无序映射(unordered_map)和无序集合(unordered_set)等。这些容器提供了动态存储数据的能力,并且提供了多种操作,如插入、删除、查找和遍历元素。 2. 迭代器(Iterators): - 迭代器是访问容器内元素的一种抽象接口,类似于指针,但具有更丰富的操作。它们可以用来遍历容器的元素,进行读写操作,或者调用算法。 3. 算法(Algorithms): - C++标准程式库提供了一组强大的算法,如排序(sort)、查找(find)、复制(copy)、合并(merge)等,可以应用于各种容器,极大地提高了代码的可重用性和效率。 4. 函数对象(Function Objects): - 又称为仿函数(functors),它们是具有operator()方法的对象,可以用作函数调用。函数对象常用于算法中,例如比较操作或转换操作。 5. I/O流(I/O Streams): - 标准程式库提供了输入/输出流的类,如iostream,允许程序与标准输入/输出设备(如键盘和显示器)以及其他文件进行交互。例如,cin和cout分别用于从标准输入读取和向标准输出写入。 6. 异常处理(Exception Handling): - C++支持异常处理机制,通过throw和catch关键字,可以在遇到错误时抛出异常,然后在适当的地方捕获并处理异常,保证了程序的健壮性。 7. 其他组件: - 还包括智能指针(smart pointers)、内存管理(memory management)、数值计算(numerical computations)和本地化(localization)等功能。 《C++标准程式库》这本书详细讲解了这些内容,并提供了丰富的实例和注解,帮助读者深入理解并熟练使用C++标准程式库。无论是初学者还是经验丰富的开发者,都能从中受益匪浅,提升对C++编程的掌握程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

怎样使scanf函数和printf在同一行表示

在C语言中,`scanf` 和 `printf` 通常是分开使用的,因为它们的功能不同,一个负责从标准输入读取数据,另一个负责向标准输出显示信息。然而,如果你想要在一行代码中完成读取和打印,可以创建一个临时变量存储 `scanf` 的结果,并立即传递给 `printf`。但这种做法并不常见,因为它违反了代码的清晰性和可读性原则。 下面是一个简单的示例,展示了如何在一个表达式中使用 `scanf` 和 `printf`,但这并不是推荐的做法: ```c #include <stdio.h> int main() { int num; printf("请输入一个整数: ");
recommend-type

Java解惑:奇数判断误区与改进方法

Java是一种广泛使用的高级编程语言,以其面向对象的设计理念和平台无关性著称。在本文档中,主要关注的是Java中的基础知识和解惑,特别是关于Java编程语言的一些核心概念和陷阱。 首先,文档提到的“表达式谜题”涉及到Java中的取余运算符(%)。在Java中,取余运算符用于计算两个数相除的余数。例如,`i % 2` 表达式用于检查一个整数`i`是否为奇数。然而,这里的误导在于,Java对`%`操作符的处理方式并不像常规数学那样,对于负数的奇偶性判断存在问题。由于Java的`%`操作符返回的是与左操作数符号相同的余数,当`i`为负奇数时,`i % 2`会得到-1而非1,导致`isOdd`方法错误地返回`false`。 为解决这个问题,文档建议修改`isOdd`方法,使其正确处理负数情况,如这样: ```java public static boolean isOdd(int i) { return i % 2 != 0; // 将1替换为0,改变比较条件 } ``` 或者使用位操作符AND(&)来实现,因为`i & 1`在二进制表示中,如果`i`的最后一位是1,则结果为非零,表明`i`是奇数: ```java public static boolean isOdd(int i) { return (i & 1) != 0; // 使用位操作符更简洁 } ``` 这些例子强调了在编写Java代码时,尤其是在处理数学运算和边界条件时,理解运算符的底层行为至关重要,尤其是在性能关键场景下,选择正确的算法和操作符能避免潜在的问题。 此外,文档还提到了另一个谜题,暗示了开发者在遇到类似问题时需要进行细致的测试,确保代码在各种输入情况下都能正确工作,包括负数、零和正数。这不仅有助于发现潜在的bug,也能提高代码的健壮性和可靠性。 这个文档旨在帮助Java学习者和开发者理解Java语言的一些基本特性,特别是关于取余运算符的行为和如何处理边缘情况,以及在性能敏感的场景下优化算法选择。通过解决这些问题,读者可以更好地掌握Java编程,并避免常见误区。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

The Application of Autocorrelation Function in Economics: Economic Cycle Analysis and Forecasting Modeling

# Application of Autocorrelation Function in Economics: Analysis and Forecasting Models for Economic Cycles ## 1. Theoretical Foundations of Autocorrelation Function The Autocorrelation Function (ACF) is a statistical tool used to measure the correlation between data points in time series data tha
recommend-type

ethernet functionality not enabled socket error#10065 No route to host.

When you encounter an Ethernet functionality not enabled error with a socket error code 10065 "No route to host" while attempting to send or receive data over a network, it typically indicates two issues: 1. **Ethernet Functionality Not Enabled**: This error might be related to your system's networ