pid 多环控制 代码

时间: 2023-05-09 13:04:20 浏览: 109
PID控制器是一种广泛使用的控制技术,可以用于控制各种系统的行为。它通过比较目标值和实际值的误差,并根据该误差调整输出信号,以使目标和实际值之间的误差最小化。PID控制器由三个环组成:比例环、积分环和微分环。在PID多环控制代码中,同时使用这三个环,以实现更准确的精度控制。 在这个程序中,比例环用于将误差信号乘以一个比例系数,以产生一个处理误差的输出信号。积分环通过积分误差信号来纠正系统的累计误差,并将输出信号与比例环的信号相加。微分环则用于检测误差信号的变化率,并用于减少系统的震荡。 在PID多环控制代码中,反馈机制(即实际值与目标值之间的差异)被用来调整系统的输出。通过这种控制方式,系统能够快速响应任何改变,并自动纠正任何误差。 当实际值远离目标值时,比例环提供最大的调整。当系统逐渐接近目标值时,积分环开始发挥作用,以调整系统的输出。微分环确保系统的输出保持稳定,从而防止系统产生过度调整。 要实现PID多环控制,程序需要遵循一些基本准则。首先,必须对系统的工作原理有深入的了解,并考虑所有可能的变数。其次,必须定义PID参数,例如比例系数、积分时间和微分常数。最后,还需要编写一个适当的控制算法,以确保系统能够快速、准确地响应任何变化。 总之,PID多环控制具有广泛的应用,可以使用不同的控制参数来实现不同的控制效果。通过这种方法,系统能够自动纠正任何误差,并确保输出始终保持在与目标值相一致的范围内。
相关问题

stm32小车串级pid控制

在STM32小车中实现串级PID控制可以通过以下步骤进行: 1. 首先,了解姿态角的串级PID控制的原理。姿态角包括俯仰角、滚转角和偏航角,它们决定了小车的运动姿态。串级PID控制器由外层角度环和内层角速度环组成,外层角度环控制姿态角的目标值,内层角速度环控制姿态角的变化速度。这种控制方式可以提高系统的响应速度和稳态精度。 2. 在STM32上实现PID算法的代码。PID算法是一种常用的控制算法,它根据当前误差、误差的积分和误差的变化率来计算控制量。在实现PID算法的代码时,需要定义PID控制器的参数(比例系数、积分系数和微分系数),并根据当前的姿态角误差计算出控制量。 3. 在STM32上实现串级PID算法的代码。串级PID算法是在PID算法的基础上增加了一个内层的角速度环。在实现串级PID算法的代码时,需要先计算出角度环的控制量,然后根据角速度环的目标值和当前角速度计算出角速度环的控制量。 4. 实现UCOS-III姿态控制任务。UCOS-III是一种实时操作系统,可以用于实现多任务的并发执行。在实现姿态控制任务时,可以将串级PID控制算法作为一个任务,在任务中周期性地更新姿态角和角速度,并根据计算出的控制量控制小车的运动。 通过以上步骤,就可以在STM32小车上实现串级PID控制,实现对姿态角的精确控制。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *2* *3* [STM32实现四驱小车(四)姿态控制任务——偏航角串级PID控制算法](https://blog.csdn.net/qq_30267617/article/details/113541033)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

stm32pid控制pwm输出电机

在STM32中使用PID控制来输出PWM信号控制电机的速度是一种常见的方法。首先,需要设定目标速度,并将位置控制器的输出进行限幅。这可以通过编写一个函数来实现,如引用\[1\]中所示的PWM_Restrict函数。该函数将输入的PWM值与目标速度进行比较,并根据比较结果进行限幅处理,最后返回限幅后的PWM值。 在串级PID控制中,将两个或多个PID控制器按照串联的方式连接起来,其中外环控制位置,内环控制速度。对于直流电机速度位置闭环控制来说,外环输入为电机旋转的目标圈数,输出为速度;内环输入为速度,输出为PWM增量。这种串级PID控制的思想可以实现对电机速度的精准控制。具体实现时,前一个PID程序输出的是圈数,而后级PID将其作为速度处理。这是因为后级PID的期望值就是前级PID的输出值,经过PID计算得出的是电机需要的旋转速度。为了让电机按照期望速度旋转,我们需要对前级PID的输出进行限幅处理,将其限制在期望速度范围内。这样可以避免电机超速旋转或速度不达标的情况发生。具体的限幅幅值就是期望速度。这个限幅操作可以在实际的程序中实现。引用\[2\]中提供了一个例子来解释这个过程。 在STM32中,可以使用PID算法来实现对电机速度的控制。PID算法的控制框图如引用\[3\]所示。在控制电机速度时,期望输入即为电机的期望速度值。将期望输入与由编码器测得的实际速度进行差值计算,得到误差值,然后将该误差值传递给PID控制部分,计算出需要输出的控制信号。最后,将该控制信号传递给控制器,即输出给电机驱动板,从而实现对电机速度的精准控制。 综上所述,使用STM32的PID控制来输出PWM信号控制电机的速度可以通过设定目标速度并进行限幅处理来实现。同时,可以采用串级PID控制的思想,将位置控制和速度控制相结合,实现对电机速度的精准控制。 #### 引用[.reference_title] - *1* *2* [基于stm32的直流电机串级PID控制(代码开源)](https://blog.csdn.net/weixin_45720060/article/details/129947250)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [【STM32】STM32F103C8T6实现直流电机速度PID控制](https://blog.csdn.net/qq_52785580/article/details/123002248)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

相关推荐

帮我解释一下 PID_TypeDef g_location_pid; /* 位置PID参数结构体*/ /** * @brief 初始化PID参数 * @param 无 * @retval 无 / void pid_init(void) { /位置环初始化/ g_location_pid.SetPoint = (float)(50PPM); /* 设定目标Desired Value*/ g_location_pid.ActualValue = 0.0; /* 期望值*/ g_location_pid.SumError = 0.0; /* 积分值*/ g_location_pid.Error = 0.0; /* Error[1]/ g_location_pid.LastError = 0.0; / Error[-1]/ g_location_pid.PrevError = 0.0; / Error[-2]/ g_location_pid.Proportion = L_KP; / 比例常数 Proportional Const*/ g_location_pid.Integral = L_KI; /* 积分常数 Integral Const*/ g_location_pid.Derivative = L_KD; /* 微分常数 Derivative Const*/ g_location_pid.IngMax = 20; g_location_pid.IngMin = -20; g_location_pid.OutMax = 150; /* 输出限制 / g_location_pid.OutMin = -150; } /* * 函数名称:位置闭环PID控制设计 * 输入参数:当前控制量 * 返 回 值:目标控制量 * 说 明:无 */ int32_t increment_pid_ctrl(PID_TypeDef PID,float Feedback_value) { PID->Error = (float)(PID->SetPoint - Feedback_value); / 偏差 / #if INCR_LOCT_SELECT PID->ActualValue += (PID->Proportion * (PID->Error - PID->LastError)) / E[k]项 / + (PID->Integral * PID->Error) / E[k-1]项 / + (PID->Derivative * (PID->Error - 2 * PID->LastError + PID->PrevError)); / E[k-2]项 / PID->PrevError = PID->LastError; / 存储误差,用于下次计算 / PID->LastError = PID->Error; #else PID->SumError += PID->Error; if(PID->SumError > PID->IngMax) { PID->SumError = PID->IngMax; } else if(PID->SumError < PID->IngMin) { PID->SumError = PID->IngMin; } PID->ActualValue = (PID->Proportion * PID->Error) / E[k]项 / + (PID->Integral * PID->SumError) / E[k-1]项 / + (PID->Derivative * (PID->Error - PID->LastError)); / E[k-2]项 / PID->LastError = PID->Error; #endif if(PID->ActualValue > PID->OutMax) { PID->ActualValue = PID->OutMax; } else if(PID->ActualValue < PID->OutMin) { PID->ActualValue = PID->OutMin; } return ((int32_t)(PID->ActualValue)); / 返回实际控制数值 */ }

最新推荐

recommend-type

基于stm32+FreeRTOS+ESP8266的实时天气系统

【作品名称】:基于stm32+FreeRTOS+ESP8266的实时天气系统 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:项目简介 基于stm32F407+FreeRTOS+ESP8266的实时气象站系统,通过物联网技术实时读取天气情况,温度以及自带了一个计时功能。 所需设备 stm32F407,淘晶驰串口屏,ESP8266; 串口屏连接串口3,ESP8266连接串口2,串口1用于打印状态。 实现过程 通过对ESP8266发送AT指令,从服务器读取天气的json数据,然后通过cJSON解码数据,最后FreeRTOS对任务进行管理(FreeRTOS和cJSON有冲突,需要将cJSON申请内存空间的函数替换成FreeRTOS申请内存的函数,每次解码后,一定要释放内存,否则解码会卡死,而且需要把Heap_size设置稍微大一点,推荐设置为4096)
recommend-type

地县级城市建设2022-2002 公厕数 公厕数-三类以上公厕数 市容环卫专用车辆设备总数 省份 城市.xlsx

数据含省份、行政区划级别(细分省级、地级市、县级市)两个变量,便于多个角度的筛选与应用 数据年度:2002-2022 数据范围:全693个地级市、县级市、直辖市城市,含各省级的汇总tongji数据 数据文件包原始数据(由于多年度指标不同存在缺失值)、线性插值、回归填补三个版本,提供您参考使用。 其中,回归填补无缺失值。 填补说明: 线性插值。利用数据的线性趋势,对各年份中间的缺失部分进行填充,得到线性插值版数据,这也是学者最常用的插值方式。 回归填补。基于ARIMA模型,利用同一地区的时间序列数据,对缺失值进行预测填补。 包含的主要城市: 通州 石家庄 藁城 鹿泉 辛集 晋州 新乐 唐山 开平 遵化 迁安 秦皇岛 邯郸 武安 邢台 南宫 沙河 保定 涿州 定州 安国 高碑店 张家口 承德 沧州 泊头 任丘 黄骅 河间 廊坊 霸州 三河 衡水 冀州 深州 太原 古交 大同 阳泉 长治 潞城 晋城 高平 朔州 晋中 介休 运城 永济 .... 等693个地级市、县级市,含省级汇总 主要指标:
recommend-type

Xposed Framework 是一种为 Android 系统设计的软件框架,它可以实现对 Android 系统的各种修改

Xposed Framework 主要特点: 模块化定制:Xposed 框架允许用户安装各种模块,这些模块可以修改系统和应用程序的行为,添加新功能,或者改进现有功能。 不需要刷机:与传统的修改 Android 系统需要刷机不同,Xposed Framework 只需要在已经 root 过的设备上安装 Xposed 框架,然后即可通过安装模块来实现对系统的定制。 易于管理:Xposed 框架提供了一个用户友好的管理界面,用户可以很容易地查看已安装的模块、启用或禁用模块,并进行相关设置。 灵活性:由于 Xposed 框架的模块化设计,用户可以根据个人喜好选择安装不同的模块,从而实现个性化的定制。 使用 Xposed Framework 需要注意的事项: Root 权限:安装 Xposed Framework 需要设备拥有 Root 权限,因此这可能会导致设备保修失效,同时需要谨慎操作,以避免对系统造成损害。 模块安全:Xposed 框架的模块是由第三方开发者开发的,因此需要注意模块的来源和安全性,避免安装恶意模块导致系统问题。 系统稳定性:一些 Xposed 模块可能会影响系统
recommend-type

YOLOv10算法直升机机场-停机坪标志检测+数据集

yolov10算法直升机机场-停机坪标志检测训练权重, 包含直升机机场-停机坪标志检测数据集,数据集目录已经配置好,划分好 train,val, test,并附有data.yaml文件,yolov5、yolov7、yolov8,yolov9等算法可以直接进行训练模型,txt格式标签, 数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 数据集配置目录结构data.yaml: nc: 1 names: - helipad
recommend-type

pillow_create_sample.py

pillow_create_sample.py
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。