请用百度的paddle框架完成cnn+lstm并处理kdd数据集
时间: 2024-01-05 17:04:31 浏览: 94
基于paddle框架实现的ernie+fc,bilstm+attention,cnn,bow模型的二分类,多分类,多标签分类实现
好的,首先需要安装PaddlePaddle框架并下载KDD数据集。假设已经安装好了PaddlePaddle和Jupyter Notebook,接下来进行以下步骤:
1.导入依赖库
```python
import paddle
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```
2.读取KDD数据集
```python
data = pd.read_csv('kddcup.data_10_percent_corrected', header=None)
```
3.数据预处理
```python
# 将非数值型数据转换为数值型数据
data[1], uniques = pd.factorize(data[1])
data[2], uniques = pd.factorize(data[2])
data[3], uniques = pd.factorize(data[3])
# 将标签转换成数值型数据
data[41] = data[41].apply(lambda x: 0 if x=='normal.' else 1)
# 划分数据集和测试集
X_train, X_test, y_train, y_test = train_test_split(data.iloc[:, :-1], data.iloc[:, -1], test_size=0.3, random_state=42)
# 特征标准化处理
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# 将数据集转换成三维数组
X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1]))
X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1]))
```
4.搭建模型
```python
# 定义模型
model = paddle.nn.Sequential(
paddle.nn.Conv1D(in_channels=1, out_channels=64, kernel_size=3),
paddle.nn.ReLU(),
paddle.nn.MaxPool1D(kernel_size=2),
paddle.nn.LSTM(input_size=32, hidden_size=64, num_layers=2),
paddle.nn.Flatten(),
paddle.nn.Linear(in_features=64, out_features=32),
paddle.nn.ReLU(),
paddle.nn.Linear(in_features=32, out_features=1),
paddle.nn.Sigmoid()
)
# 定义优化器和损失函数
optimizer = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())
loss_fn = paddle.nn.BCELoss()
# 定义训练函数
def train(model, optimizer, loss_fn, X_train, y_train):
model.train()
epoch_loss = 0
for i in range(len(X_train)):
x = paddle.to_tensor(X_train[i], dtype='float32')
y = paddle.to_tensor(y_train[i], dtype='float32')
y_pred = model(x)
loss = loss_fn(y_pred, y)
epoch_loss += loss.numpy()[0]
loss.backward()
optimizer.step()
optimizer.clear_grad()
return epoch_loss / len(X_train)
# 定义评估函数
def evaluate(model, X_test, y_test):
model.eval()
total_correct = 0
with paddle.no_grad():
for i in range(len(X_test)):
x = paddle.to_tensor(X_test[i], dtype='float32')
y = paddle.to_tensor(y_test[i], dtype='float32')
y_pred = model(x)
total_correct += int((y_pred.numpy() > 0.5) == y.numpy())
return total_correct / len(X_test)
```
5.训练模型
```python
EPOCHS = 10
for epoch in range(EPOCHS):
train_loss = train(model, optimizer, loss_fn, X_train, y_train)
accuracy = evaluate(model, X_test, y_test)
print(f'Epoch {epoch+1}, train loss: {train_loss:.4f}, accuracy: {accuracy:.4f}')
```
通过以上步骤,我们就可以完成了cnn+lstm并处理kdd数据集。
阅读全文