用paddle框架加载fer2013数据集代码
时间: 2023-06-09 21:03:03 浏览: 119
以下是使用 PaddlePaddle 框架加载 fer2013 数据集的示例代码:
```
import paddle
from paddle.vision.datasets import Fer2013
# 加载 fer2013 数据集,将训练集、验证集、测试集分别保存在 train_dataset、val_dataset、test_dataset 中
train_dataset = Fer2013(mode='train')
val_dataset = Fer2013(mode='valid')
test_dataset = Fer2013(mode='test')
# 查看数据集信息
print('Train dataset size:', len(train_dataset))
print('Val dataset size:', len(val_dataset))
print('Test dataset size:', len(test_dataset))
# 获取数据集中的一个样本及其标签
sample, label = train_dataset[0]
print('Sample shape:', sample.shape)
print('Label:', label)
```
注意:在运行代码前,需要先安装 paddlepaddle 包和 paddlepaddle 的可视化库 paddle.vision。
相关问题
使用paddle框架写一段resnet网络代码
好的,以下是使用 PaddlePaddle 框架实现 ResNet 网络的代码:
```python
import paddle
import paddle.nn as nn
class BasicBlock(nn.Layer):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2D(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias_attr=False)
self.bn1 = nn.BatchNorm2D(out_channels)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2D(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias_attr=False)
self.bn2 = nn.BatchNorm2D(out_channels)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Layer):
expansion = 4
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2D(in_channels, out_channels, kernel_size=1, bias_attr=False)
self.bn1 = nn.BatchNorm2D(out_channels)
self.conv2 = nn.Conv2D(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias_attr=False)
self.bn2 = nn.BatchNorm2D(out_channels)
self.conv3 = nn.Conv2D(out_channels, out_channels * self.expansion, kernel_size=1, bias_attr=False)
self.bn3 = nn.BatchNorm2D(out_channels * self.expansion)
self.relu = nn.ReLU()
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Layer):
def __init__(self, block, layers, num_classes=1000):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2D(3, 64, kernel_size=7, stride=2, padding=3, bias_attr=False)
self.bn1 = nn.BatchNorm2D(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2D((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = nn.Sequential(
nn.Conv2D(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias_attr=False),
nn.BatchNorm2D(out_channels * block.expansion)
)
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = paddle.flatten(x, 1)
x = self.fc(x)
return x
def resnet18(num_classes=1000):
return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes)
def resnet34(num_classes=1000):
return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes)
def resnet50(num_classes=1000):
return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes)
def resnet101(num_classes=1000):
return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes)
def resnet152(num_classes=1000):
return ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes)
```
以上代码定义了 BasicBlock 和 Bottleneck 两个块,并使用它们构建了 ResNet 模型。其中,ResNet 可以选择使用不同的块和层数来构建不同版本的网络。通过调用 `resnet18()`,`resnet34()`,`resnet50()`,`resnet101()` 和 `resnet152()` 函数可以得到不同版本的 ResNet 网络。
paddle框架下DatasetBuilder类如何加载本地自定义数据,请代码展示
使用Paddle框架的DatasetBuilder类可以很方便地加载本地自定义数据。以下是一个简单的示例代码,展示如何使用DatasetBuilder类加载本地自定义数据集:
```python
import paddle
from paddle.io import Dataset, DataLoader
from paddle.text.datasets import DatasetBuilder
# 自定义数据集类,继承paddle.io.Dataset
class MyDataset(Dataset):
def __init__(self, data_file):
super(MyDataset, self).__init__()
self.data_file = data_file
# 加载数据集
self.data = self.load_data()
def load_data(self):
# 加载数据集
data = []
with open(self.data_file, 'r', encoding='utf-8') as f:
for line in f:
data.append(line.strip())
return data
def __getitem__(self, index):
# 根据索引返回对应的数据
return self.data[index]
def __len__(self):
# 返回数据集的长度
return len(self.data)
# 定义数据集路径
data_file = 'data.txt'
# 创建自定义数据集实例
my_dataset = MyDataset(data_file)
# 创建DatasetBuilder实例
dataset_builder = DatasetBuilder()
# 加载本地自定义数据集
dataset = dataset_builder.process(my_dataset)
# 创建DataLoader实例
dataloader = DataLoader(dataset=dataset, batch_size=32, shuffle=True, num_workers=0)
# 遍历数据集
for data in dataloader:
print(data)
```
在上面的示例代码中,我们首先定义了一个自定义数据集类MyDataset,继承了paddle.io.Dataset类。在MyDataset类中,我们实现了load_data方法用来加载数据集,实现了__getitem__方法和__len__方法用来根据索引获取数据和获取数据集的长度。
然后我们定义了数据集路径data_file,创建了自定义数据集实例my_dataset,接着创建了DatasetBuilder实例dataset_builder,使用process方法加载本地自定义数据集,并将其赋值给dataset变量。最后我们创建了DataLoader实例dataloader,遍历数据集并打印出来。
这样,我们就可以使用Paddle框架的DatasetBuilder类来加载本地自定义数据集了。
阅读全文