使用paddle框架写一段resnet网络代码
时间: 2023-06-17 07:08:17 浏览: 145
基于Paddle框架的TinyYOLO人脸检测和ResNet表情识别.zip
好的,以下是使用 PaddlePaddle 框架实现 ResNet 网络的代码:
```python
import paddle
import paddle.nn as nn
class BasicBlock(nn.Layer):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2D(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias_attr=False)
self.bn1 = nn.BatchNorm2D(out_channels)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2D(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias_attr=False)
self.bn2 = nn.BatchNorm2D(out_channels)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Layer):
expansion = 4
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2D(in_channels, out_channels, kernel_size=1, bias_attr=False)
self.bn1 = nn.BatchNorm2D(out_channels)
self.conv2 = nn.Conv2D(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias_attr=False)
self.bn2 = nn.BatchNorm2D(out_channels)
self.conv3 = nn.Conv2D(out_channels, out_channels * self.expansion, kernel_size=1, bias_attr=False)
self.bn3 = nn.BatchNorm2D(out_channels * self.expansion)
self.relu = nn.ReLU()
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Layer):
def __init__(self, block, layers, num_classes=1000):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2D(3, 64, kernel_size=7, stride=2, padding=3, bias_attr=False)
self.bn1 = nn.BatchNorm2D(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2D((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = nn.Sequential(
nn.Conv2D(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias_attr=False),
nn.BatchNorm2D(out_channels * block.expansion)
)
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = paddle.flatten(x, 1)
x = self.fc(x)
return x
def resnet18(num_classes=1000):
return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes)
def resnet34(num_classes=1000):
return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes)
def resnet50(num_classes=1000):
return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes)
def resnet101(num_classes=1000):
return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes)
def resnet152(num_classes=1000):
return ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes)
```
以上代码定义了 BasicBlock 和 Bottleneck 两个块,并使用它们构建了 ResNet 模型。其中,ResNet 可以选择使用不同的块和层数来构建不同版本的网络。通过调用 `resnet18()`,`resnet34()`,`resnet50()`,`resnet101()` 和 `resnet152()` 函数可以得到不同版本的 ResNet 网络。
阅读全文